Lecture Notes: Quantitative Reasoning and Mathematical
Thinking'

Subhashis Banerjee

Department of Computer Science
Ashoka University
Sonipat, Haryana, 131029
email: suban@ashoka.edu.in

September 21, 2025

!Copyright (©) 2025, Subhashis Banerjee. All Rights Reserved. These notes may be used in an academic
course with prior consent of the author.






Contents

Introduction

God gave us numbers, and human thought created algorithms

2.1 Numbers. . . . . . . e e e e
2.1.1 Numbers may be represented in multiple ways . . .. ... ... ... .. ..

2.2 Sets ... e e

2.3 The set of Natural numbers . . . . . . . . ... ... .. ... ...
2.3.1 Addition . . . ... e
2.3.2  Multiplication . . . . . . . ...
2.3.3 Subtraction . . . . . . . ... e e
2.3.4 Division . . . ... e e

2.4 The Sets of Integers . . . . . . . .

2.5 The Sets of Rationals . . . . . . . . . . . ... ..

Ruler and compass algorithms

3.1 Constructing a line perpendicular to a given line passing through a point . . . . ..
3.2 Constructing a line parallel to a given line passing through a point . . . . . . . . ..
3.3 Constructibility and the compass equivalence theorem . . . . . ... ... ... ...
3.4 Rational numbers are constructible . . . . . .. ... 0000
3.5 Euclid’s GCD using ruler and compass . . . . . . . .. ... . oo

Abstraction turns problems and concepts into principles

4.1 Relations . . . . . . L

4.2 Function . . . . . . . L e
4.2.1 One-One (injective), Onto (surjective), and bijective Functions . . . . . . ..

4.3 Counting, Finite and Infinite Sets . . . . . . . . . . . . ... ... ... .. .. ...
4.3.1 Finitesets . . . . . . . L e
4.3.2 Infinite sets and bijections to N . . . . . . ... o oo
4.3.3 Integers and Rationals are countable . . . . . . .. ... ... ... ...

4.4 Equivalence Relations, Classes, and Partitions . . . . . . ... ... ... .......
4.4.1 Equivalence classes and partitions . . . . ... .. ... ..o

4.5 Modular Arithmetic, Magic Squares, and One-Time Pads . . . . . .. ... ... ..
4.5.1 Modular arithmetic . . . . . . .. ... o
4.5.2 Magic Squares . . . . ... e e e
4.5.3 Perfect Secrecy and One-Time Pads . . . . . . ... ... .. ... ... ...

We need precision in thought and action to win arguments

5.1 Propositions, Basic Boolean Logic and Truth Tables . . . . . .. .. ... ... ...
5.1.1 The basic operations . . . . . . .. ... L L e
5.1.2 Truth tables. . . . . . . . . . e
5.1.3 Three-variable examples of truth tables . . . . .. ... .. ... .......

5.2 Vacuous Truth . . . . . . . . . e

5.3 Mathematical proofs . . . . . . . ...

15
16
17
17
18
20

23
23
24
25
25
26
26
26
27
28
29
29
29
30



5.3.1
5.3.2
5.3.3
5.3.4
9.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10

CONTENTS

Proof by Explicit Construction . . . . . . . ... ... ... ... ....... 38
Proof by Counter-Example . . . . . .. ... ... ... ... 40
Direct Proof . . . . . .. 41
Proof by Contradiction . . . . . .. ... . L 42
Proof by Contrapositive . . . . . . . . . ... 43
Proof by the Pigeonhole Principle . . . . . ... ... ... ... ....... 44
Proof by Exhaustion of cases . . . . . . ... ... ... ... 45
Proofs of Equivalence . . . . . . ... ... 46
Proof by Induction . . . . . . . ... Lo 48

Conclusion . . . . . . . e 50



Chapter 1

Introduction

Courant and Robbins, in What is Mathematics? (1941), present mathematics not as a dry collection
of formulas and tools, but as a living, creative discipline rooted in human thought and curiosity.
For them, mathematics is both a pathway for understanding the natural world and an autonomous
intellectual pursuit that reveals structures of order, beauty, and generality. They stress that its
essence lies in the interplay between abstraction and concrete problem-solving: starting from simple,
practical problems, mathematics ascends to general concepts and theories that then illuminate new
domains.

They emphasize accessibility and unity: mathematics belongs to everyone who is willing to think
rigorously, and its spirit combines logic with imagination. Rather than reducing it to calculation
or technical skill, Courant and Robbins describe mathematics as “an expression of the human
mind” where precision, creativity, and aesthetic appreciation converge. Their central idea is that
mathematics is at once useful, philosophical, and artistic — simultaneously a language of science, a
training ground for reasoning, and a source of intellectual delight.

Early mathematics was computational when the emphasis was on finding methods to obtain
solutions. However, over the years, the disciplines of mathematics and computer science — the subject
of designing algorithms for problem solving — have diverged. In mathematics abstraction is symbolic
and logical. It seeks general structures, patterns, and proofs independent of implementation. It
often endeavours to seek and capture common structures across different abstractions. The primary
aim is truth and understanding — developing rigorous proofs, ensuring logical consistency, and
uncovering general laws. Utility often follows from this pursuit but is not always the main driver. In
contrast, the role of abstraction in computational thinking is more operational and algorithmic. It
emphasizes creating computational process models for natural, social and even abstract phenomena
for operational analysis. The primary aim is to construct effective procedures — designing algorithms
that solve problems efficiently, often under constraints of time, memory, and real-world complexity.
The power lies in execution and exploration — trying to reveal insights about systems too complex
to solve analytically. Both have become fundamental strands of epistemology that are essential for
critical scientific thinking.

Data-driven inference represents a third way of knowing, distinct from the deductive rigour of
mathematics and the constructive procedures of computational thinking. As practiced in modern
data science and machine learning, it seeks knowledge not by proving theorems or designing explicit
algorithms, but by discovering patterns and regularities directly from empirical data. Its epistemic
core is induction at scale: hypotheses, models, or predictors are justified by their ability to capture
hidden correlations and to generalize to new observations. Unlike mathematics, correctness is not
absolute, and unlike computational thinking, procedures are not always fully transparent. Instead,
credibility arises from empirical adequacy — the degree to which models explain, predict, or align
with observed phenomena. This mode of inference expands our epistemic toolkit for a world where
complexity and abundance of data overwhelm deductive or constructive methods, but it also brings
new philosophical challenges: uncertainty about correctness, bias, and the gap between correlation
and causation.


https://en.wikipedia.org/wiki/What_Is_Mathematics%3F

CHAPTER 1. INTRODUCTION

In this course we will try to cover some fundamentals of all of the above.



Chapter 2

God gave us numbers, and human
thought created algorithms

“In mathematics the art of proposing a question must be held of higher value than solving it.”
“A set is a Many that allows itself to be thought of as a One.” — Georg Cantor

“A number will be a set of classes such as that any two are similar to each other, and none outside the set
are similar to any inside the set.”
“Mathematics rightly viewed possesses not only truth but supreme beauty.” — Bertrand Russel

2.1 Numbers

Our discussion on mathematics and computing must start with numbers. What are numbers after
all? The same number may be represented with symbols such as 3, III, or even as a line of a fixed
length. But what is the underlying concept behind the different representations?

Bertrand Russell defined numbers as sizes (or cardinality) of collections. Some examples of equinu-
merous collections are { Red, Blue, Green}, { Amir, Salman, Shahrukh}, {Godavari, K averi, Krishna}.
Collections are also called Sets or Classes in Mathematics. All three Sets above are of cardinality 3.

7
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Russel defined a number as — the number of a class is the class of all those classes that are similar
(equinumerous) to it. So, according to Russel, a number is a class of classes.

Note that cardinality of sets is not the only way to describe the concept of a number. A number
may also be a measure of a length. For example, in the straight line below, if we define the segment
0a to be the unit length representing the number 1, then the line segment 0b which is twice the length
of Oa may represent the number 2.

Without belabouring the point, it will suffice to say for our purpose that all of us intuitively
understand what numbers mean.

2.1.1 Numbers may be represented in multiple ways

However, we need to do useful stuff with numbers — we need to add, subtract, multiply and divide
them for obvious practical reasons. Indeed, the history of numbers date back to the Mesolithic stone
age. The early humans had to figure out — due to a variety of practical considerations — that if they
put two similar collections of size two and size three together, the larger collection becomes of size
five.

Civilisations have found many ways to represent numbers through the ages. Some examples are as
tally marks in the prehistoric to early civilisations — as straight marks on bones, sticks, or stones — as
can be observed in the archaeological evidence of the Ishango bones from around 20000 BCE; as
Egyptian — a stroke for 1, heel bone for 10, coil of rope for 100, etc. — or Roman - I, V, X, L, C, D,
M — numerals; as Base-60 (sexagesimal) numbers written as combinations of “1” and “10” wedges
by the Babylonians around 2000 BCE; as used rods arranged on counting boards in base-10 with
positional notation in Chinese rod systems; as positional decimal systems in Indian numerals in the
Gupta period around 5" century CE; as beads or stones moved on rods or grooves to represent
numbers in Abacus systems in China, Rome, Mesopotamia and Jerusalem; with Indo-Arabic numerals
in the medieval period; with various mechanical calculators such as Napier’s bones, Slide rules,
Pascal’s calculator, and Leibniz’s stepped reckoner in the 17t" century; as gears and levers in Charles
Babbage’s first programmable computer — the Analytic Engine; and as bits and bytes in modern
digital computers. Note, also, that the methods of carrying out these operations — the algorithms —
will necessarily depend on the representation we choose for numbers.

2.2 Sets

We will use Sets quite a bit in this course. We may describe a Set or a Collection by explicitly listing
out its elements without duplicates, such as in the examples above. We may sometimes also describe
a Set with a property like “all students enrolled in the QRMT section FC-0306-3”. We write this
formally using a variable x as {x | x is a student in the QRMT section FC-0306-3}. The symbol | is
read as “such that”.

If an element x belongs to a set A, we usually write this as x € A.

Here are some more examples of Sets:

1. A= {z |z is a student pursuing a degree in India}
2. B={x |z is a CS Major student at Ashoka University}

3. C ={z |z is a CS Major student at Ashoka University and z is female}



2.3. THE SET OF NATURAL NUMBERS 9

Clearly, all members of C are also members of B, and all members of B are members of A. We
then say that C' is a subset of B (C' C B), and B is a subset of A (B C A). Formally, a set B is a
subset of another set A, denoted as B C A, if x € A whenever x € B. The empty set is denoted by ¢,
its size is zero (0), and it is a subset of all sets.

Given two sets A and B, the union AU B is the set of all elements that are in A, or in B, or in
both. Formally, AUB = {z | z € Aor z € B}. For example, if A = {1,2,3} and B = {3,4, 5}, then
AUB ={1,2,3,4,5}.

Given two sets A and B, the intersection AN B is the set of all elements that are in both A and
B. Formally, ANB = {xz |z € Aand x € B}. For example, if A ={1,2,3} and B = {3,4,5}, then
AN B ={3}.

Clearly, for any set A, AU¢ = A and AN ¢ = ¢,

Exercise 2.1 Suppose B C A. Argue that
1. AUB=A
2. AnNB=1RB

2.3 The set of Natural numbers

Some sets can also be unbounded or infinite. We define the set of Natural numbers as N =
{0,1,2,3,...}%

While we all intuitively understand this set, note that the elements of the set are as yet uninterpreted
and undefined. We can overcome this lacunae by assuming a God-gifted ability to count. Given a
number n as the size of a Set or a length, let us assume that we can interpret and construct the
successor of n as S(n) = n+ 1. Then, we can formally define the set of Natural numbers N as

1. 0 € N, where 0 is the symbol that denotes the size of the empty set, and
2. if n € N, then S(n) =n+1€N

We can then adopt a suitable representation for successive elements in the set N. Note that the
set N is unbounded, because every number — no matter how large — has a successor.

2.3.1 Addition

We observed that the underlying concept of a number is independent of specific representations.
Ideally, so should be the concepts of carrying out various operations with numbers. We may think
of addition — the sum a + b of two numbers a and b — as just combining two similar sets of sizes a
and b. However, the procedure for “combining” is not representation independent. While simple
“putting together” may work if we represent the numbers as collections of stones or marbles, it is not
well defined for adding two numbers in the place-value representation that we are familiar with from
junior school. Hence “combining” is a somewhat unsatisfactory way of defining addition.

A better way of defining a + b is by using the successor operation S(a) = a + 1, b times. As long
as we have a primitive method for computing a 4+ 1 in any representation for an arbitrary a, this
definition of a + b becomes representation independent. We may define the basic property of addition
using counting as:

For all m,n € N:

1. m+0=m

2. m+S(n)=S(m+n)

10 is usually not included in the Set of Natural numbers in Mathematics. We will however include 0 in the set of
Natural numbers in this course. After all, it is quite natural to score a 0 in an examination
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In the above definition we have used the same trick as in definition of the set N above, of defining
a larger concept as a successor of a smaller concept. The process repeats, and the actual additions
happen in the return path. For example,

ot
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Note that the repeated substitution of a larger problem with a smaller problem is bounded, because
the first condition of the definition works as a sentinel that we are bound to encounter as we keep
reducing n.

We can then describe a procedure for computing a + b (Algorithm 1) based on the above principle,
but avoiding the deferred computations. The procedure takes a and b as input and returns sum as
the output. sum < sum + 1 denotes the operation “sum is assigned sum + 1”7 indicating that sum
is incremented by 1.

Algorithm 1 An algorithm for a 4+ b by +1 b-times.

1: procedure ADD(a,b)

2 counter <— 0

3 sum <— a

4: while counter < b do
5 sum < sum + 1

6

counter < counter + 1
return sum

Exercise 2.2 1. Assuming that the operation a + 1 is available as a primitive, convince yourself
that the above procedure for adding two numbers are correct.

2. Arque that if the operation a+1 is available as a primitive, then the above algorithm for addition
s representation independent.

3. Describe how the algorithm may be implemented using pebbles or marbles to represent numbers.

2.3.2 Multiplication

We can now define multiplication as repeated additions:
1. nx0=0,forallneN
2. nx S(m)=nxm+n, for all n,m € N

Note that here again we have defined n x S(m), in terms of a smaller problem m X n of the same
type.
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Exercise 2.3 1. Convince yourself that according to the above definitionnxm=n—+n+n+...+n.

m times

2. Provide a representation independent algorithm, using only the successor function and addition,
for multiplication of two numbers.

3. Describe how the algorithm may be implemented using pebbles or marbles to represent numbers.

2.3.3 Subtraction

To define the subtraction operation m — n, we may first define a predecessor operation P(n) —
analogous to S(n) — as

1. P(0) is undefined
2. P(n)=n—1for all n > 0.

We assume, as before, that we have a primitive counting based procedure for computing P(n) =n—1
in any representation. We can define the subtraction operation m — n similarly to addition:
For all mn e Nym >n

. m—m=0
2. m—n=5S(P(m)—n)

As before, note that P(m) — n is a smaller problem that m — n.
The subtraction algorithm may then be given as:

Algorithm 2 An algorithm for a — b, a > b by —1 b-times.
1: procedure SUBTRACT(a, b)
2 counter < 0
3: while counter < b do
4
5

a+a—1

counter < counter + 1
return a

Exercise 2.4 Provide alternative versions of Algorithms 1 and 2 without using the counter. Instead
decrement b using b <— b — 1 repeatedly till b = 0.

2.3.4 Division

Division is a natural requirement in civilised societies, mainly for sharing. However, it may not
always be possible to divide natural numbers in equal proportions. For example, a collection of size 3
cannot be divided in two proportions of equal sizes without breaking up at least one member element.
We have the division theorem:

Theorem 2.1 Given two numbers a,b € N, there exist unique q,v € N (quotient and remainder,
respectively) such that a = bg+r and 0 < r <b.

Proof:  Let us first argue that such ¢ and r exist. Repeatedly compute a —b,a —2b,a—3b,...,a—kb,
k > 0, till a — kb < b and subtraction is possible no more. Set ¢ = k and r = a — kb. Clearly, q is the
total number of times b can be subtracted from a, and 0 < r < b. If r = 0 then b divides a exactly.

To argue that that ¢ and r obtained by the above procedure are unique, let us suppose they are
not. Then, there exist g1,71 and g, 72 such that

a=bq +71,0<r; <0
a="bga+12,0<1ry <0

Without loss of generality, let us assume that g; > ¢2. The above implies that b(¢; — g2) = 15 — 7.
One of two cases arise:
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1. g¢1 = qo. This implies that r; = 73, and hence uniqueness.

2. g1 > q2. This implies that ¢ — g2 > 1 € N. Hence ro —r; > b. But this is not possible because
0 <ry,ro < b. Hence ¢ and r must be unique.

O
In the above proof, we used explicit construction as a proof technique for establishing existence of
such ¢ and r, and contradiction for establishing their uniqueness. We will revisit these techniques
later in the course when we discuss proofs.

Exercise 2.5 Describe an algorithm using repeated subtraction that computes q and v given a and b.

2.4 The Sets of Integers

We defined the subtraction operation m — n,m > n,m,n € N as the number of times the successor
operation S() needs to be applied to reach m from n. This definition requires the restriction that
m > n. An obvious generalisation is to remove the restriction and measure the difference in terms of
either the successor S() or the predecessor P() operator. Subtraction then becomes directional, and
we require negative numbers to represent the direction. This leads us to the set of integers

z=4...,-3,-2,-1,0,1,2,...}
Arithmetic in the set Z follows the same principles as in N, except that they are now directional.

Exercise 2.6 Rework the definitions and the algorithms for addition, multiplication, subtraction and
division in Z.

2.5 The Sets of Rationals

The division theorem tells us that given m,n € N, there exist ¢, € N, such that m can be divided
in to ¢ parts of size n, possibly leaving a remainder 0 < r < n. Division is an obvious fundamental
need for resource sharing. If each unit is indivisible — like live cattle, for example — then the division
theorem is the best we can do. However, items measured in units such as weight, volume or length —
such as meat from a hunted animal, or a pile of grains — are often divisible in smaller proportions
like 1/374, 2/25" etc. So, division inevitably leads us to fractions. We define the set of Rational
numbers as

Q= {z|lzr=p/q,p€Z,qeN,q#0}

We often also write this as %. These are numbers of the type +1/1,+1/2,4+1/3,+1/4,4+2/5 etc. We
may also insist that p and ¢ should have no common factors (i.e., ged(p, q¢) = 1; see Section 3.5 for a
formal definition of ged) to avoid multiple representations for the same Rational number. Clearly
NCZcQ.

Note, however, that we now have a situation where between any two rational numbers there are

infinitely many other rational numbers.
Exercise 2.7 Convince yourself of the above statement.

This implies that there is no well defined successor function for a rational number, and we need to
revisit our definition of addition for rationals. We start by noting that, for example,
2 1+2

4z 1
373773

i.e., we can add the numerators as in Z if the denominators are the same. However, the addition

2,3
3 4
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is not well defined unless the two fractions can be expressed in the same unit. But we can multiply
the numerator and denominator of the first fraction by 4, and the second by three to convert to the
same unit where the denominator of both is 12

2x4 3x3 8 9 8+9 17

5x4 dx3 12 127 12 12

Note that multiplying the numerator and the denominator of a fraction with the same number does
not change the fraction. So, we can define the general rule for addition of two rational numbers as
P1 P2 P1XG+p2Xaq

_|_
q1 q2 q1 X g2

where all the additions and multiplications are defined on the set Z.

Exercise 2.8 Ezxtend the above idea to define subtraction, multiplication and division in the set Q.

Problems

1. Give three different representations for the number 6 (for example: tally marks, Roman numerals,
line segment lengths). Explain how the operation “+1” is carried out in each representation.

2. Research and briefly describe how numbers were represented in one historical number system
not discussed in class (e.g., Mayan or Incan). Compare it with the decimal positional system.

3. Let
A = {z | z is an even number less than 20}, B = {z | z is a prime number less than 20}.
Compute AN B, AUB, and A\ B.
. Prove or disprove: If A C B and B C C, then A C C.
. Construct a real-world example of three sets A, B, C such that C ¢ B C A.

. Using only the successor function S(n) =n + 1, show step by step how to compute 4 + 3.

N B~ NS, BTN

. Show that addition defined by the recursive rules in the text is associative, i.e. prove (a+b)+c =
a + (b+ ¢) using the definition.

oo

. Starting from the definition n x S(m) = (n x m) + n, compute 3 x 4 step by step.

9. Write pseudocode (representation-independent) for multiplication using only the successor
function and addition.

10. Explain how you could simulate multiplication using only pebbles to represent numbers.
11. Using the predecessor function P(n), compute 7 — 4 step by step as in the recursive definition.

12. Implement Algorithm 2 (subtraction by repeated decrementing of b) on the input a = 10,b = 6.
Show the intermediate steps.

13. Using the Division Theorem, compute the quotient and remainder when a = 29,b = 5 using
repeated subtraction.

14. Prove that the quotient and remainder obtained from the Division Theorem are unique.

15. Extend the recursive definition of addition from natural numbers to integers, and compute
(=3) + 5.

16. Explain why we need negative numbers to generalize subtraction. Give a real-world example
where negative numbers are essential.



14CHAPTER 2. GOD GAVE US NUMBERS, AND HUMAN THOUGHT CREATED ALGORITHMS

17. Give an example of two distinct rational numbers between % and %

18. Prove that between any two rational numbers there exists another rational number. (Hint: use
their average.)

19. Compute % + % using the common-denominator method.

20. Extend the definition to show how to compute % = %



Chapter 3

Ruler and compass algorithms

“Geometry is knowledge of the eternally existent... it compels the soul to look upwards, and leads us away
from the world of appearance to the vision of truth.”
“Let no one ignorant of geometry enter here” — Plato

=

7 A
(/ ]y,
% .‘\)\,‘:Arf/«”' m
i

ﬁ,\\ Ut

Figure 3.1: Ruler and compass. We will assume that the ruler is unmarked, and lengths can only be
measured by adjusting the width of the compass.

Our endeavour so far has been to define numbers, and operations on them, in a representation
independent manner. Let us now consider a specific computational model — straightedge and compass
constructions introduced by the ancient Greeks — and examine whether the abstract operations we
have defined above can be translated in to definite constructible procedures, or algorithms. Most
of the geometric constructions date back to Euclid’s books of Elements from around 300 BCE.
We will often — by force of habit — refer to them as ruler and compass constructions but with the
understanding that the ruler has no markings for length measurements, and can only be used to
draw straight edges. See Figure 3.1.

15
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Figure 3.2: Constructing a line perpendicular to a given line passing through a point

Let us first consider some basic constructions. In what follows, the correctness of the constructions
will often rely on the basic geometric properties of similar triangles. A reader may revise them from
here and here.

3.1 Constructing a line perpendicular to a given line passing
through a point

Given a straight line ¢, and a point x on it, let us consider the problem of constructing a line
perpendicular to ¢ and passing through x. We give a construction in Algorithm 3 (See Figure 3.2).

Algorithm 3 Constructing a line perpendicular to a given line passing through a point
1: procedure PERPENDICULAR(x, ¢)
2 ¢=CIRCLE(z,r), where r is a random length
3: (A, B) =cn¥
4: cA ZCIRCLE(/LQT)
5.
6
7

cp = CIRCLE(B, 2r)
(a,b) =canNcp
result = LINE(a,b)

We have described the algorithmic procedure using some standard primitives. ¢ = CIRCLE(x,r)
denotes the construction of a circle ¢ centred at x of radius 7. A and B are the intersection points of
¢ with ¢, denoted in the algorithm as (A, B) = ¢N{. Similarly, c4 and cp are circles of radius 2r
centred at A and B respectively, and a and b are the intersection points of ¢4 and c¢g. LINE(a,b)
joins a and b and is the result.

Exercise 3.1 1. Convince yourself that the above construction is correct. Use properties of
similar triangles.

2. Argue that LINE(a,b) is also the perpendicular bisector of AB.


https://en.wikipedia.org/wiki/Triangle
https://en.wikipedia.org/wiki/Similarity_(geometry)

3.2. CONSTRUCTING A LINE PARALLEL TO A GIVEN LINE PASSING THROUGH A POINT17

Figure 3.3: Constructing a line parallel to a given line passing through a point

3.2 Constructing a line parallel to a given line passing through
a point

Given a line ¢, and an arbitrary point x, consider the problem of construction of a line parallel to ¢
passing through z. We give a construction in Algorithm 4 (See Figure 3.3).

Algorithm 4 Constructing a line parallel to a given line passing through a point
1: procedure PARALLEL(z, ¢)
2: ¢=CIRCLE(z,r), where r is a random length
3: (A, B) =cn/
4: Construct p, the perpendicular bisector of AB using Algorithm 3. Argue that p passes through

P=pn/t

Construct ¢, a perpendicular to ¢ passing through A using Algorithm 3.
Construct s, a perpendicular to p passing through x using Algorithm 3.
Q=qnNs

result = LINE(Q, x)

Note that in steps 4,6 and 7 of the algorithm, we have used the procedure of Algorithm 3. We will
routinely use a previously defined algorithm as a primitive to define a new algorithm.

3.3 Constructibility and the compass equivalence theorem

The above two sections give us several examples of construction of points, lines, line segments
and circles. The informal definition of constructibility is as follows. Given points are by definition
constructible. A line joining two constructible points is constructible. So is the circle centred on one
constructible point passing through another constructible point. A point is constructible if it is an
intersection of constructible lines and circles.

The compass advocated by the Greek philosopher Plato in these constructions is a collapsing
compass, i.e., a compass that “collapses” whenever it is lifted from a page, so that it may not be
directly used to transfer distances unlike in a modern fixable aperture compass. Note that nowhere
in Sections 3.1 and 3.2 have we transferred distances using a fixed size compass lifted from the page.

This is however not a limitation as the following construction shows.

Theorem 3.1 A collapsing compass can be used to transfer a given length to an arbitrary given


https://en.wikipedia.org/wiki/Plato
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F a+b |

b {

4

a

Figure 3.5: Construction of a + b.

point on a giwen line. That is, given an arbitrary length AB, a line ¢ and a point P on it, it is
possible to construct using a collapsing compass a point Q on £ such that PQQ = AB.

Proof:

Algorithm 5 A compass-equivalence construction

procedure COMPASS-EQUIVALENCE(A,B,(,P)
: ¢ = CIRCLE(A, B); note that AB =d

1:

2

3 Construct p, the line parallel to ¢ passing through A using Algorithm 4
4: R=cnNp

5: q=LINE(A,P)
6 Construct s, the line parallel to g passing through R using Algorithm 4
7 Q=snt

8 PQ is the result on ¢

Exercise 3.2 Convince yourself that PQ = AB.

O
The above is different from the original construction and proof of correctness as given by Euclid
in his Book of Elements. Interested readers may study a modern version of the original construction
here.

3.4 Rational numbers are constructible

First, we can consider any given length as 1, measure it using a non-collapsing compass — which
we just proved is equivalent to a collapsing compass — and add it to any point on a given line by
marking it off with the compass. We can similarly subtract. The operations S(n) and P(n) are thus


https://en.wikipedia.org/wiki/Compass_equivalence_theorem

3.4. RATIONAL NUMBERS ARE CONSTRUCTIBLE

&
- 1

b

— 4
+—b {

a—->b

Figure 3.6: Construction of a — b.

I(

1

1l . .
O—e— .,

Figure 3.7: Construction of ab given a and b.

Figure 3.8: Construction of a/b given a and b.

19



20 CHAPTER 3. RULER AND COMPASS ALGORITHMS

realisable using ruler and compass. Consequently, the elements of the set Z are constructible. In
Figures 3.5 and 3.6 we give the direct constructions for a + b and a — b.

Exercise 3.3 1. Describe a ruler and compass procedure for multiplication using repeated addi-
tions.

2. Describe a ruler and compass procedure for division (computing quotient and remainder) using
repeated subtractions.

Given integers a and b as line segments, we can also construct rational number ab and a/b directly
using similar triangles. The construction of Figure 3.7 involves marking off the lengths a and b in two
perpendicular segments from O, constructing the unit length in the direction of b, and constructing a
line parallel to the line al through a or b. The intercept of the parallel line in the direction of a then
marks the length ab by similarity of the triangles.

We can similarly construct a/b as depicted in Figure 3.8. Rational numbers are thus constructible.

3.5 Euclid’s GCD using ruler and compass

GCD of two integers a > 0, b > 0 is defined as the largest integer d,d > 0 that divides both a and b.
Consider the following algorithm for computing the GCD:

a ifb=0
a ifa=5
ged(a —b,b) ifa>b
ged(a,b—a) ifb>a

ged(a,b) =

Exercise 3.4 1. Convince yourself that the above algorithmic specification (rule) is correct for
computing GCD. Carry out the pencil and paper computation using the above algorithm for
some special cases.

2. Describe the procedure for executing the algorithm using ruler and compass.

The algorithm described above is from Fuclid’s Elements. You can find a description of it here.
This is also considered to be the oldest non-trivial algorithm in common use.

Now that we have defined our first computational model, several questions arise. What are the
full powers of the model? What are the other things that can be constructed? What are the limits
of the model, and are there easily defied concepts that are not constructible? Can there be other
computational models more powerful than ruler and compass? These are the kind of questions we
interrogate every computational model with. We will revisit some of these questions in the latter
chapters.

Exercise 3.5 Try to construct /2 using ruler and compass. (Hint: Use the Pythagoras theorem on
a right triangle with sides 1,1.) Argue why this length is constructible.

Problems

1. Construct, using ruler and compass, the perpendicular bisector of a line segment AB. Show
that any point P on the perpendicular bisector is equidistant from A and B.

2. Given a triangle ABC, construct the three medians using ruler and compass. Argue that they
intersect at a single point (the centroid).

3. Using Algorithm 3 (perpendicular construction), describe step by step how to construct the
altitude from a vertex of a triangle. Illustrate your steps with a figure.


https://en.wikipedia.org/wiki/Euclidean_algorithm
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. Given a line ¢ and an external point P, use Algorithm 4 (parallel construction) to draw the

line parallel to ¢ through P. Prove that the two lines do not intersect.

. Show that the compass-equivalence construction (Algorithm 5) indeed allows one to transfer a

given length AB to an arbitrary point P on a line ¢. Verify your construction with a worked
example.

. Describe a ruler and compass procedure for multiplication of two integers a, b using repeated

additions. Demonstrate the construction for a = 3,0 = 4.

. Similarly, describe a ruler and compass procedure for division using repeated subtractions.

Apply your method to compute the quotient and remainder when dividing a segment of length
11 into parts of length 3.

. Using constructions based on similar triangles, show step by step how to obtain the product ab

given line segments a and b.

. Construct the rational number % on a line, starting with a unit segment. Explain each step of

your construction.

Apply Euclid’s GCD algorithm (as given in Section 3.5) to the lengths a = 21, b = 15, using
repeated subtraction with compass and ruler. Show all intermediate steps.

Prove that Euclid’s GCD algorithm terminates in a finite number of steps for all a,b € N.
(Hint: in each step one of the arguments strictly decreases.)
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Chapter 4

Abstraction turns problems and
concepts into principles

Quotes: 43

-

"Logic and
are nothing but
specialised linguistic
structures.”

Jean Piaget "
b}

Modern mathematics and computer science are built upon a few simple but very powerful ideas.
Among the most important are the notions of relations and functions, which allow us to describe
how objects are connected or transformed. Counting, infinity, and the ways in which sets can be
grouped into classes help us measure size, structure, and complexity. These ideas may look abstract
at first, but they underlie the methods used in algorithms, data structures, and logical reasoning.

In computer science, functions capture the essence of computation: a program takes inputs and
produces outputs, just as a function does. Understanding one-one and onto functions helps us reason
about whether information is lost, preserved, or fully covered. Equivalence classes and partitions
allow us to organise data into categories. Modular arithmetic, often called “clock arithmetic,” is
fundamental in cryptography, error detection, and digital systems. Learning these concepts gives us
a foundation to explore deeper mathematics and to apply it to practical computational problems.

4.1 Relations

The Cartesian product of two sets A and B, denoted by A x B, is the set of all ordered pairs (a,b)
such that a € A and b € B. Thus,

Ax B={(a,b) ]| (a € A) and (b € B)}
A™ is the set of all ordered n-tuples (a1, as,...,ay) such that a; € A for all i. i.e.,

A" =Ax Ax---x A
N———

n times

23
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Relation (not a function) Function
IS 2 s 3

Figure 4.1: Relation vs function: In a relation, an element in A can be mapped to multiple elements
in B, but not so in a function. In a function, all elements in A must be covered, but not necessarily
so in a relation. The set B need not be fully covered in either.

A relation tells us which elements of one set are connected to elements of another.

A binary relation R from A to B is a subset of A x B. It is a characterisation of the intuitive
notion that some of the elements of A are related to some of the elements of B.

If A= {1,2,3} and B = {a,b,c}, then R = {(1,a),(2,b),(3,a)} is a relation from A to B.
Familiar binary relations from N to N are =, #, <, <, >, >. Thus the elements of the set
{(0,0),(0,1),(0,2),...,(1,1),(1,2),...} are all members of the relation < which is a subset of N x N.

4.2 Function

A function from A to B — written as f : A — B — is a special relation in which:
1. every element of A is related to some element of B, and
2. no element of A is related to more than one element of B.

Equivalently, each input has exactly one output.
Some familiar examples of functions are

1. + and * (addition and multiplication) are functions of the type f : N x N — N
2. — (subtraction) is a function of the type f: N x N — Z.

3. div and mod are functions of the type f: N x N — N. If a = ¢ * b+ r such that 0 < r < b and
a,b,q,7 € N then the functions div and mod are defined as div(a,b) = ¢ and mod(a,b) = r.
We will often write these binary functions as a x b, a div b, a mod b etc.

4. The binary relations =, #, <, <, >, > are also functions of the type f : N x N — B where
B = {false, true}.

5. f:N—=N, f(z) =22

We write the definition of a function formally as follows.

A function from A to B is a binary relation f from A to B such that for every element a € A
there is a unique element b € B so the (a,b) € f (or f(a) =b)'. We will use the notation f: A — B
to denote a function f from A to B. The set A is called the domain of the function f and the
set B is called the co-domain of the function f. The range of a function f : A — B is the set
{b € B | for some a € A, f(a) = b} denoting the subset of elements in B that are actually covered

by f.

1This is sometimes written using mathematical notation as Va € A, 3 unique b € B. V is the usual symbol for for
all, and 3 is the usual symbol for there exists
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Injective, not surjective

r

.
1 ¢

~

Surjective, not injective

25

Bijective

Figure 4.2: One-one (injective): different inputs give different outputs. (like roll numbers: no two
students share one roll); Onto (surjective): every element of the codomain gets hit by some input.
(no empty seats.); Bijective: both one-one and onto. (perfect pairing; has an inverse.)

4.2.1 Omne-One (injective), Onto (surjective), and bijective Functions

When we study functions, it is often not enough to know that “every input has exactly one output.”
We also want to understand how well the function uses its codomain and whether different inputs
remain distinct after applying the function.

Think of a classroom with students and seats:

e If no two students sit in the same seat, the “assignment” of students to seats is one-one
(injective).

e If every seat is occupied by at least one student, the assignment is onto (surjective).

e If both conditions happen together — each student has exactly one seat, and every seat is filled
— then the assignment is bijective. In such a case we may also define an inverse function from
seats to students.

The formal definitions below make the concepts precise.
Let f: A — B be a function. f is

Injective if whenever f(a1) = f(az) for ai,as € A, we can conclude that a1 = as
Surjective if for all b € B, there exists a € A such that f(a) = b.

Bijective if it is both injective and surjective.

Example 4.1 1. f: N = R, f(n) = 2n is injective but not surjective (odd numbers are not
covered).

2. g:N—=N, g(0) =0; g(n) =n—1 is surjective but not injective (why?).

4.3 Counting, Finite and Infinite Sets

Counting is one of the most fundamental activities in mathematics: it is how we measure the size of
a set. At first glance this seems very straightforward — counting laddoos in a box or students in
a class is familiar to everyone. However, mathematics asks us to extend this simple idea to more
abstract settings: What does it mean for a set to be “finite”? How can we formally compare the
sizes of different sets, especially when some sets are infinite? For finite sets, the answer is clear: we
can match the elements of the set to the numbers {1,2,...,n}. For infinite sets, the situation is
more subtle, but surprisingly we can still talk about “countable” sets — those whose elements can
be placed in a one-to-one correspondence with the natural numbers N. This point of view leads to
some striking and important results: for instance, that the set of all even numbers, the set of all
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integers, and even the set of all rational numbers are all countably infinite. At the same time, we
will see later in this course that there are sets of numbers so large that they cannot even be listed in
sequence: these are called uncountable sets. These distinctions between finite, countably infinite, and
uncountable sets form the foundation for much of modern mathematics, and are crucial in computer
science as well, where questions of size, encoding, and enumeration play a central role.

4.3.1 Finite sets

A set is finite if it has a finite number of elements. Formally, a set A is finite if there exists a natural
number n and a bijection
f:A—={1,2,...,n}.

This means that the elements of A can be paired exactly with the first n natural numbers.
Example 4.2 The set {a,b, c} is finite because we can define f(a) =1, f(b) =2, f(c) =3, which is
a bijection to {1,2,3}.

4.3.2 Infinite sets and bijections to N

A set is infinite if it is not finite. Some infinite sets are still “countable” because they can be put in
one-to-one correspondence (bijection) with the natural numbers N. In such a case the elements of
the set can be enumerated as first, second. third, and so on.

Definition. A set A is countably infinite or denumerable if there exists a bijection f: A — N.

Example 4.3 1. The natural numbers N are countably infinite via the trivial bijection f(n) = n.

2. The set of even naturals E = {0,2,4,6,...} is countably infinite. Define f : N — E by
f(n) =2n. This is a bijection.

3. The set of odd naturals O = {1,3,5,7,...} is also countably infinite. Define g : N — O by
g(n) =2n+ 1. This is a bijection.

4.3.3 Integers and Rationals are countable

The integers Z = {...,—2,—1,0,1,2,...} can be enumerated in a sequence:
0,-1,1,-2,2,-3,3,—4,4, ...

Define a bijection h : N — Z by

5 if n is even,

h(n) =
—"TH if n is odd.

This shows that Z is countable.
The rationals Q = {g :p,q € Z,q # 0} are also countable, though the proof is less obvious.

Step 1. First, consider only the positive rationals Q*. We can arrange them in a grid with
numerator along one axis and denominator along the other:

1 2 3
I 1T 1
2|13 3
3|4 34

Note, however, that this does not give us an enumeration.
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Step 2. Use Cantor’s method: start at %, then %, %, then %, %7 %, and so on, zig-zagging across the

grid. This produces a sequence that eventually lists every positive rational.
1 1 1 1 1

p3 / 5

2
1

o

Bl
e

INIS
(ST

p (numerator)

Ao
o

¢ (denominator)

Exercise 4.1 1. Convince yourself that above ordering gives a bijection from N to ordered pairs
(p.q),p>0,g>0.

2. Can you work out an explicit formula for the bijective function? (This can be challenging)

Step 3. To avoid repetitions, we can restrict to fractions in lowest terms (e.g. % is skipped since it
1
equals 7).

Step 4. To cover negative rationals as well, interleave them with positives:

0,1 —

IR

==

=N

PR

N|—=

2 1
’ 10 DR

This construction defines an explicit enumeration of @, so Q is countably infinite.

4.4 Equivalence Relations, Classes, and Partitions

In mathematics, we often want to group objects together when they share some common property.
For example, in geometry all shapes that have the same size and shape are considered “congruent,”
and in number theory two integers that leave the same remainder when divided by n are considered
“equivalent.” These situations are captured formally by the concept of an equivalence relation.

Equivalence relations are important because they let us partition a large and possibly complicated
set into smaller, simpler pieces (called equivalence classes). Each equivalence class collects all elements
that are considered “the same” under the relation. Many areas of mathematics, and even computer
science (e.g. hashing, classification, state-space reduction), rely on such partitions.

Definition. A relation R on a set A is an equivalence relation if for all a,b,c € A:
o (Reflexive) (a,a) € R,
e (Symmetric) (a,b) € R = (b,a) € R,
o (Transitive) (a,b) € R and (b,¢) € R = (a,c¢) € R.

We will also write (a,b) € R asa Rbor as a~ b.


https://en.wikipedia.org/wiki/Georg_Cantor
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Definition. Set of elements that are equivalent form an equivalent class. Given a € A, the
equivalence class of a under relation R is

[a] ={z € A: (a,x) € R}.
Here are some example of equivalent relations

Example 4.4 1. Same birthday. On the set of all students, define x ~ vy if x and y have the
same birthday. Each equivalence class is a group of students born on the same day.

2. Congruent triangles. On the set of all triangles in the plane, define Ty ~ Ts if T1 and Tb
are congruent (same shape and size). This relation is reflexive (every triangle is congruent to
itself ), symmetric (if Ty is congruent to Ty, then Ty is congruent to T1), and transitive (if Ty
is congruent to Ty and Ty to T3, then Ty is congruent to Ts).

3. Sets with same cardinality. Clearly, A ~ B if there exists a bijection between A and B.
Since bijective functions have inverses that are bijections, and composition of two bijective
functions is a bijection, we have that sets with same cardinality for an equivalent class.

4. Congruence of integers (mod n). Define a ~ b if n divides a—b. This is reflexive (a—a =0
is divisible by n), symmetric (if a — b divisible by n, so is b — a), and transitive (if a — b and
b — ¢ divisible by n, so is a — ¢). The equivalence classes are the sets of integers with the same
remainder when divided by n.

For example, on a 12-hour clock, 16 ~ 4 (mod 12); and, for the minutes hand, 65 ~ 5 (mod 60);

Exercise 4.2 Which of the following relations are not equivalent relations and why?
1. aRbifa=hb.
2. aRbifa<b.
3. a Rb if ged(a,b) = 1.

4.4.1 Equivalence classes and partitions

Theorem 4.1 An equivalence relation defined on set A partitions A into disjoint equivalence classes:
every element of A belongs to exactly one equivalence class, and the classes together cover all of A.

Proof: ~We have to argue for two things — first, no element belongs to two or more equivalent
classes; and second, the union of all the equivalence classes covers the whole set.

Suppose = belongs to two distinct equivalence classes. Then there exits a,b € A such that x ~ a
and x ~ b but a «¢ b. But this is not possible because ~ is symmetric and transitive.

And, by reflexivity, each z is at least equivalent to itself. So, no element is left out. O

Example 4.5 The relation Congruence of integers (mod 3) split Z into three classes:
o={..,-6-3036,...}, [1]={..,-5-2,1,47,...}, [2]={..,—-4,-1,2,5,8,...}.

These three classes form a partition of Z.
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4.5 Modular Arithmetic, Magic Squares, and One-Time Pads

4.5.1 Modular arithmetic

Consider, for example, the set Z; = {0, 1,2,3,4,5,6} consists of all integers modulo 7. This means
that we can perform addition and multiplication, and then reduce the result to its remainder upon
division by 7.

Addition. Examples:
3+5=1 (mod7), 6+4=3 (mod?7).

Every element has an additive inverse, i.e. a number x such that a +z =0 (mod 7).

Multiplication. Examples:
3x5=1 (mod7), 4x6=3 (modT).

For multiplication, every nonzero element has a multiplicative inverse, i.e. a-x =1 (mod 7).
17t=1, 27'=4, 37'=5 6!=6.

Notice that 0 has no multiplicative inverse.
Thus (Z7,+) is a finite arithmetic structure under addition, and (Z7,-) with {1,2,3,4,5,6} is a
finite arithmetic structure under multiplication. This has many interesting applications.

4.5.2 Magic Squares

A magic square is an arrangement of numbers in a square grid such that the sums of each row,
column, and both diagonals are the same. Modular arithmetic allows us to construct magic squares
in structures like Z,,, where the “magic sum” is computed modulo n. This is a playful illustration of
modular addition applied to combinatorial design.

A simple way to build a magic square modulo n is to take any ordinary magic square and reduce
each entry modulo n. The LuoShu 3 x 3 square, which has a rich history in occult and numerology is
given as

41912
3157 (each line sums to 15)
811|6
It reduces modulo 7 to
4122
0] ez
1/11]6

Since 15 =1 (mod 7), every row, column, and diagonal now sums to 1 € Z;. For instance,
442+2=8=1 (mod7), 3+5+0=8=1 (mod7), 1+5+2=8=1 (modT7).

The diagonals also satisfy 4+ 5+6=15=1 (mod 7) and 24+ 5+1=8=1 (mod 7).

General recipe (odd moduli). Let S be any 3 x 3 magic square over the integers with magic
sum M. For any modulus n > 2, the entry-wise reduction S € (Z,)3*? is a magic square in Z,
with magic sum M € Z,, because modular addition preserves equality of sums. More generally, for
any «, 8 € Z,, the entry-wise transform a.S + (8 is again a magic square modulo n with magic sum
aM + 38 (mod n).


https://en.wikipedia.org/wiki/Luoshu_Square
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4.5.3 Perfect Secrecy and One-Time Pads

The idea of modular arithmetic is also central in cryptography. In the one-time pad, a message
(plaintext) is converted into numbers (say letters A =0,...,Z = 25). A random secret key of the
same length is chosen, and encryption is done by addition modulo 26:

ciphertext, = plaintext; + key, (mod 26).

Decryption uses subtraction modulo 26.

Claude Shannon showed that if the key is truly random, used only once, and kept secret, then the
ciphertext reveals no information about the plaintext: this is called perfect secrecy. Thus, a simple
application of modular addition gives us a theoretically unbreakable cryptosystem.

Summary

Modular arithmetic provides the framework to work with remainders in a structured way. It underlies
recreational mathematics like magic squares, as well as fundamental cryptographic protocols such as
the one-time pad.

Problems

1. Let A={1,2,3} and B = {a,b,c}. (a) List all elements of the Cartesian product A x B. (b)
Define two different binary relations Ry, Rs C A X B. (c) Which of them, if any, are functions?

2. Show that the relation < on N is a subset of N x N. Explicitly write out the first ten elements
of this relation.

3. Give an example of a relation from {1,2,3} to {a,b} that is not a function. Explain why it
fails to satisfy the definition of a function.

4. Consider the function f : N — N defined by f(n) = 2n. Argue that f is injective but not
surjective.

5. Consider the function g : N — N defined by
g(0) =0, g(n) =n—1for n > 0.
Show that g is surjective but not injective.

6. Let h : Z — Z be defined by h(x) = = + 5. Prove that h is bijective and describe its inverse
function.

7. Define the function p : N x N = N by p(a,b) = a x b. Argue formally that p is a well-defined
function.

8. Construct an example of a function f : A — B where A = {1,2, 3,4}, B = {a, b} that is neither
injective nor surjective. Explain why.

9. Prove that if a function f : A — B is bijective, then there exists a unique inverse function
f~': B — Asuch that f~(f(a)) = a for all a € A.

10. Consider the function f : N — N defined recursively as
f0)=0, fn+1)=f(n)+(2n+1).
Show that f(n) = n?. What kind of function is this (injective, surjective, bijective)?

11. Give an everyday example (outside mathematics) of: (a) an injective mapping, (b) a surjective
mapping, and (c¢) a bijective mapping.
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Challenge: Prove or disprove — the composition of two injective functions is injective, and the
composition of two surjective functions is surjective. What about bijective functions?

On the set {1,2,3,4,5,6}, define a relation R by a ~ b if a — b is divisible by 2.

(a) Show that R is an equivalence relation.

(b) List the equivalence classes.

Consider the relation “x has the same number of letters as y” on the set of English words.
Prove or disprove that it is an equivalence relation. What do the equivalence classes look like?

Work out the addition and multiplication tables of Zs. Identify all additive and multiplicative
inverses.

In Z7, solve the linear congruence 3z = 2 (mod 7).
Find all solutions to 22 =1 (mod 15).

Construct a bijection between the set of even numbers and N. Then, using a diagram, show
how integers Z can be listed in sequence, proving that they are countable.

Show that the set of rational numbers Q is countable by describing an explicit enumeration
strategy.

Verify that the LuoShu square

41912
315|7
8116

is a magic square. What is its magic sum?

Construct a 3 x 3 magic square modulo 7 using the method of reducing an ordinary magic
square. What is the magic sum in Z?

In a one-time pad over the alphabet {A =0,B =1,...,Z = 25}, encrypt the message MATH
with the key CODE. Show the numerical steps modulo 26 and give the ciphertext.

Explain why re-using the same key in a one-time pad scheme can destroy perfect secrecy. Give
a simple example with short strings.
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Chapter 5

We need precision in thought and
action to win arguments

“Mathematics as an expression of the human mind reflects the active will, the contemplative reason, and the
desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality
and individuality.” — Richard Courant

“Pure mathematics is, in its way, the poetry of logical ideas.” — Albert Einstein

Logic is the language of reasoning. Whenever we argue in mathematics, make a claim in science,
or even decide something in everyday life, we implicitly use the rules of logic. Boolean logic, named
after the mathematician George Boole, provides a precise mathematical framework to study truth
and falsity.

In this chapter, we will introduce the basic building blocks of logic, learn how to represent them
with truth tables, explore important rules like De Morgan’s laws, understand how to work with
more than two statements at a time, and examine subtle but important ideas such as vacuous truth.
Equally importantly, we will also study some of the standard methods of writing mathematical
proofs. These include direct proofs, proofs by counter-examples, proofs by contrapositive, proofs
by contradiction, and proofs by induction. Learning these strategies will allow you to apply logical
reasoning to establish mathematical results with clarity and rigour.

The aim of this chapter is to provide a foundation that is both rigorous and intuitive, preparing you
for deeper study in mathematics and computer science, where careful reasoning and proof techniques
are essential.

33
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5.1 Propositions, Basic Boolean Logic and Truth Tables

In mathematics and computer science, many problems boil down to deciding whether something is
true or false. A statement that can be judged true or false is called a proposition. For example:

e “2is an even number” is true.
e “5is less than 3” is false.
e “r+2=7"1is a proposition, but its truth depends on the value of x.

Boolean logic studies how we can combine such statements using logical operations like AND,
OR, NOT, and IMPLIES. These operations are the foundation of digital circuits, programming
languages, and formal mathematical proofs.

5.1.1 The basic operations
We denote truth values as T (true) and F (false).

Conjunction (AND). The statement p A ¢ is true only if both p and ¢ are true. Ezample: “I will
go for a walk and it is sunny.” This is only true if both parts are true.

Disjunction (OR). The statement p V ¢ is true if at least one of p or ¢ is true. Ezample: “T will
have tea or coffee.” In everyday language, “or” can sometimes mean “one but not both,” but in
logic the inclusive sense is used: tea, coffee, or both makes the statement true.

Negation (NOT). The statement —p has the opposite truth value of p. Example: If p =“It is
raining,” then —p =“It is not raining.”

Implication (IF...THEN). The statement p = ¢ means “p implies ¢” or “If p then ¢.” It is false
only when p is true but ¢ is false. In all other cases it is true. Think of it as a promise: “If you pass
the QRMT course, then you will get a laddoo.”! The only way the promise fails is if you pass but
still do not get a laddoo. If (unfortunately) you do not pass, the promise is not broken if you still
get a laddoo, so the implication is considered true. Passing QRMT is sufficient to get a laddoo, so
we say that “p is sufficient for ¢”. Passing the course and yet not getting a laddoo will make the
promise false, so we say that “q is necessary for p”.

Biconditional (IF AND ONLY IF). The statement p < ¢ is true when both p = ¢ and ¢ = p,
i.e., p and ¢ have the same truth value, either both true or both false. Ezxample: “A number is even
if and only if it is divisible by 2.”

Exclusive OR (XOR). The statement p ® ¢ is true when exactly one of p or ¢ is true, but not
both. Ezample: “You can win first prize or second prize.” You cannot win both at the same time.

5.1.2 Truth tables

Truth tables let us list all possible truth values of statements and see how the logical operations work.

plallprha|pVe|p=q|peq|pdy
T|T| T T T T F
T|IF| F T F F T
F|T| F T T F T
F|F| F F T T F

INote, however, that I am making no such promise. It is just a supposition for making a point.
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De Morgan’s Laws

These laws explain how negation interacts with AND and OR:

“(pAg)=(=p)V(~g), ~(pVag) =(-p)A (7).

Example 5.1 Let p = “bring a wizard to the QRMT class” q = “bring a dragon to the QRMT class”
Then —(p V q) means “do not bring a wizard or a dragon to the QRMT class,” which is the same as
“do not bring a wizard to the QRMT class and do not bring a dragon to the QRMT class”.

Example 5.2 In contrast, =(p A q¢) means “It is not the case that you bring both a wizard and a
dragon to the QRMT class,” which is logically equivalent to “either you do not bring a wizard to the
QRMT class or you do not bring a dragon to the QRMT class (or both).”

Exercise 5.1 1. Convince yourself that the truth functions given in the table above, and the De
Morgan’s laws, are reasonable.

2. In particular, it is the truth table of p = q that is most commonly used in logical deductions.
Try to think of a few example English sentences that corroborate the truth table; especially the
third row.

3. Argue, using both truth tables and language-based examples, that p = q is equivalent to ~q = —p.
This is called contrapositive.

4. Argue, using both truth tables and language-based examples, that p = q is equivalent to —pV q.
5. Argue, using both truth tables and language-based examples, that p < q is equivalent to = (p®q).

6. Sometimes, in everyday life, we observe q, and hypothesize p and p = q, i.e., we hypothesize that
p may have caused q. This is called abductive reasoning. Arque that such abductive reasoning
will violate our rules of deduction in mathematics. However, abductive reasoning is essential
for the sciences and the social sciences. Can you reason why, perhaps through some examples?
The hypotheses generated through abductive reasoning of course need to be validated, even in
the sciences and the social sciences.

The truth tables that underlie propositional logic are not empirical discoveries but conventions
inherited from linguistic and philosophical traditions. They represent a form of “agreed upon truth,”
codifying how we collectively interpret connectives such as “and,” “or,” “not,” and “implies.” In this
sense they are axiomatic in nature: we do not prove that —(p V ¢) should behave like (—p A —¢), we
simply accept the tabular assignments as the foundation upon which deductions are made. Logical
proofs then proceed within this framework of shared agreement. If any one of us refuses to accept
these conventions — if, for example, someone insists that “and,” “or,” or “implies” should work
differently — then there is no common ground to move forward, and the very possibility of building
logical arguments collapses.

5.1.3 Three-variable examples of truth tables

When we have three propositions p, ¢, r, there are 23 = 8 possible combinations of truth values. Truth
tables become longer, but the method is the same.

Example 1. Consider p A (¢ V r). We first compute ¢ V r, then combine with p using AND.
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Venn diagram illustration

The formula p A (¢ V r) can also be illustrated with sets. Think of p, ¢, as sets of outcomes where
each proposition is true. The shaded area corresponds to outcomes where p is true and at least one
of g or r is true.

5.2 Vacuous Truth

The third line of the truth table for p = ¢, which suggests that if p is false and ¢ is true, then
p = q is true, requires special attention. This forms the basis for many subtle logical arguments. A
statement of the form “If p then ¢” is called an implication. As we saw, an implication is only false if
p is true and q is false. Therefore, if p is false, the implication is always true. This phenomenon is
called vacuous truth.

Example 5.3 1. “If 5 is even, then 5 is prime.” Since 5 is not even, the whole statement is true,
regardless of the second part.
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2. “All unicorns have wings.” This can be written as “For every x, if x is a unicorn then x
has wings.” Since there are no unicorns, the condition never applies, and so the statement is
vacuously true.

3. “If I am the king of France, then 2+ 2 =5.” Because the condition “I am the king of France”
18 false, the implication is true.

Vacuous truth is not a trick — it is a necessary feature of logic. It ensures that statements of the
form “All elements of an empty set have property P” are automatically true. For example: “All
prime numbers greater than 1000 and less than 1001 are even.” There are no such numbers, so the
statement is vacuously true.

We will use this quite a bit in the latter chapters.

5.3 Mathematical proofs

A proof is a method for establishing the truth of a statement. We use different methods in different
spheres of life:

Rigour Truth type Field Truth teller
0 Word of God Religion God/Priests
1 Authoritative truth | Business/School Boss/Teacher
2 Legal truth Judiciary Law/Judge/Lawmakers
3 Philosophical truth Philosophy Plausible argument
4 Scientific truth Physical sciences | Experiments/Observations
5 Statistical truth Statistics Data sampling
6 Mathematical truth Mathematics Logical deduction

Mathematical reasoning applies the highest standards of rigour for what may be considered as a
proof, but only for very tightly defined domains. In mathematics we do not accept statements as
true merely because they seem plausible or reasonable, or because many examples seem to support
them. A proof is a logically complete argument that establishes truth from agreed assumptions,
which may be definitions, axioms, or previously proved results. This chapter presents some core
proof techniques, each with its own “feel” and natural use cases:

1. Proof by Explicit Construction — to prove that an element with some qualifying property
exists, it is sufficient to construct an example.

2. Proof by Counter-Example — to disprove a universal claim, find one instance where it fails.

3. Direct Proof — derive the conclusion straight from the hypothesis using definitions and
algebra.

4. Proof by Contradiction — assume the negation of what you want, reach an impossibility,
and conclude the original claim.

5. Proof by Contrapositive — prove the logically equivalent statement —() = —P instead of
P=qQ.

6. Proof by the Pigeonhole Principle — to prove using the principle that if more objects are
placed into fewer containers, then at least one container must hold more than one object.

7. Proof by exhaustion of cases — prove that statement hold for all of an exhaustive set of
cases.

8. Proof by Induction — prove a base case and a step that carries truth from n to n+1. We
will cover this in the next chapter.

Along the way, we emphasize how to think when choosing a technique.
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5.3.1 Proof by Explicit Construction

A proof by explicit construction demonstrates the truth of a statement of the form “there exists
such that P(x)” by actually exhibiting such an x and verifying that it satisfies P(x). This is perhaps
the most concrete kind of existence proof: instead of reasoning abstractly, we build or display the
required object 2.

In our earlier discussion of ruler and compass constructions in Section 3 we showed, step by step,
how to construct a length a + 1 from a given length a, or how to realize the greatest common divisor
of two numbers geometrically. Each of those is an instance of explicit construction: the proof of
existence of a geometric object lies in the instructions themselves.

Here are some other examples of proof by explicit construction.

Theorem 5.1 There ezist integers x,y such that 14x + 21y = 7.
Proof:  We explicitly construct one such solution: take x = —1, y = 1. Then
14(-1)+21(1) = -14421 = 7.

Thus such integers exist. In fact, by varying  and y we can generate an infinite family of solutions,
but the single explicit example suffices to establish existence. O

Theorem 5.2 There exist integers a, b, c such that a® + b = 2.
Proof:  Exhibit (a,b,c) = (3,4,5). Indeed,
32 +4%=9+416 =25 = 5%

Hence such integers exist. This triple is explicitly constructed and is known as the smallest nontrivial
Pythagorean triple. O

Theorem 5.3 For any rationals v < s, there exists a rational ¢ with r < q¢ < s.

Proof:  Explicitly construct ¢ = T;S. Because r < s, we clearly have r < ¢ < s. Moreover, since r
and s are rational, their average q is also rational. Thus such a ¢ exists. O

Theorem 5.4 There ezist integers x,y such that
35 4+ 22y = 1.

Proof: To construct a solution, we compute the greatest common divisor of 35 and 22.

35=1-22+ 13,
22=1-13+409,
13=1-9+4,
9=2.-4+1.

Now back-substitute to express 1 as a combination of 35 and 22:

1=9-2-4

But4=13-1-9, so
1=9-2(13-9)=3-9—-2-13.

2In ancient Mesopotamia (ca 2000 BCE), Babylonian mathematicians used algorithmic procedures to solve linear
and quadratic equations for specific examples. The ancient Greeks — most notably Euclid (ca 300 BCE) — introduced
geometric construction as a core part of geometric proofs. The kuttaka (pulverizer) algorithm of Aryabhata (5" c)
(5t" c), Jayadeva (c. 10tP—11t" c.), and later Bhéskara IT (12¢" c.) is a direct construction of integer solutions to linear
Diophantine equations. Before the 19" century most proofs were constructive in nature.
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Now substitute 9 =22 — 13:
1=3(22-13)—-2-13=3-22-5-13.

Next, substitute 13 = 35 — 22:
1=3-22-5(35-22)=—-5-35+8-22.

Thus, one explicit solution is
r=-95, y=2_8.

O

Remark. FEquations such as above are called linear Diophantine equations. A solution may not
always exist. The above method of finding a solution if it exists is called the FExtended Euclidean
algorithm, which not only proves that solutions exist when ged(35,22) = 1, but by working through
the steps we explicitly construct the solution 3.

Theorem 5.5 The integer b has a multiplicative inverse modulo 17.
Proof: ~'We need an integer x such that
S5e=1 (mod 17).

This is equivalent to solving the linear Diophantine equation

be+ 17y =1
for integers x,y.
Apply the Euclidean algorithm:
17=3-5+2,
5=2.-2+41.
Now back-substitute:
1=5—-2-2.

But2=17-3-5, so
1=5-2(17-3-5)=7-5—-2-17.

Thus
1=7-5+(-2)-17,
which shows that © =7, y = —2 is an explicit solution.
Therefore
5.7=1 (mod 17),
so 7 is the multiplicative inverse of 5 modulo 17. O

Remark. This construction not only proves that 5 has an inverse modulo 17, but also produces
the explicit inverse 7. In fact, the extended Euclidean algorithm always gives such a construction
whenever ged(a,m) = 1.

3The origins of this algorithm can be traced back to the kuttaka (pulverizer) algorithm of Aryabhata (5" c),
Jayadeva (c. 10*"—11*" c.) and later Bhaskara II (12!" c.) refined and applied the kuttaka extensively. Bhaskara in
the Lilavatt and Bijaganita gives worked examples of solving linear Diophantine equations with what is recognizably
the extended Euclid method.
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When to prove by explicit construction. Proof by explicit construction is particularly valuable
when the question is “does there exist?” and the object in question is concrete enough to build
or write down. It contrasts with nonconstructive methods (such as contradiction or pigeonhole
arguments, which we will study later) where existence is established without showing a specific
example. Both are mathematically valid, but constructive proofs have the added advantage of
providing insight into the nature of the object itself.

5.3.2 Proof by Counter-Example

A universal statement Vz P(z) is false if there exists a single  with —=P(z). Producing such an z
disproves the claim completely . For example, consider the exchange of Figure 5.1 on social media

No English word has double "OQ"

except the word "Food". Prove me
wrong!

This is proof that preschool education is
important in childhood and that
choosing the right books and tools to
learn is more important than Nollywood.

For now, get a stool, go back to the
classroom and learn some coordination.

Don't be a hooligan

Figure 5.1: A counter-example to a universal claim

Exercise 5.2 Which basic logical reasoning method has been used here to disprove the universal
claim?

Example 5.4 Let us consider a few more examples.

1. Claim: “The product of any two prime numbers is prime.”
Counter-example. 2 -3 =6 is not prime.

2. Claim: “For all integers n, the number n? + n + 41 is prime.”
Counter-example. At n =41, 412 + 41 + 41 = 41 - 43 is composite.

What counter-examples teach. They refine sloppy universal claims. When a statement fails,
analyzing why the witness breaks it often suggests a corrected statement. The expression n? +n + 41
produces prime numbers for all integers n with 0 < n < 39, but fails afterwards.

4Philosophically and logically, the concept of a counterexample existed in ancient Greek dialectics and argumentation,
notably in the Socratic method where contradictory examples were used to challenge general claims or definitions. In
medieval and early modern mathematics, counterexamples became more systematically used to falsify conjectures.
Famous historical examples include Euler’s counterexample disproving the conjecture that all Fermat numbers are
prime.


https://en.wikipedia.org/wiki/Fermat_number
https://en.wikipedia.org/wiki/Fermat_number
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z* with —P(z")
disproves the uni-
versal claim

YV has property P(z)

Figure 5.2: One counterexample z* inside the “universe” circle shows the claim Vz P(z) is false.

5.3.3 Direct Proof

A direct proof of P = @ proceeds as a straight line: Assume P — unpack definitions — algebra/logic

= Q.

Consider the following examples.

Definition. An integer n is even if n = 2k for some integer k; it is odd if n = 2k 4+ 1 for some
integer k.

Theorem 5.6 If a and b are even integers, then a + b is even.
Proof: Let a =2k and b = 2m for integers k, m. Then

a+b=2k+2m=2(k+m),
which is a multiple of 2, hence even. O
Theorem 5.7 If = is odd, then 2 is odd.
Proof: Let x =2k + 1. Then 22 = (2k + 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1, which is odd. O
Theorem 5.8 1 +2+3+---+n=n(n+1)/2

Proof: Let S=14+2+3+---+n.
Hence, S=n+(n—1)+ (n —2)+---+ 1, in the reverse order. This implies that

2S=n+1)+n+1)+n+1)+---+(n+1)

n times
Thus, S =n(n+1)/2. |
Theorem 5.9 Fvery odd integer is equal to the difference between the squares of two integers.

Proof: Let a = 2k+1 be an arbitrary odd integer. Then a = 2k+1 = k> +2k+1—k? = (k+1)2 — k%
O

When to prefer direct proofs. They shine when definitions already carry the structure you
need, or when simple algebra lifts P to (). If you find yourself repeatedly “expanding the definitions”
as your first move, you are in direct-proof territory.
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5.3.4 Proof by Contradiction

To prove P = @ by contradiction, assume both P and —@). If these assumptions force an impossibility
(a statement that cannot be true), then =@ must be false, hence @ true °. This style of reasoning is
also called reductio ad absurdum.

Consider the following examples.

Theorem 5.10 If n is odd, then n? is odd.

Proof: Let P be the statement “n is odd,” and @Q be the statement “n? is odd.” Assume P A —=Q:
that is, n is odd but n? is even. If n is odd, then n = 2k + 1 for some integer k. Then

n? = (2k + 1) = 4k* + 4k + 1 = 2(2k* + 2k) + 1,
which is odd. This contradicts the assumption that n? is even. Therefore, n? must be odd. O
Theorem 5.11 If ab is odd, then both a and b are odd.

Proof: Let P be the statement “ab is odd,” and @ be the statement “both a and b are odd.”
Assume P A —=Q: that is, ab is odd but at least one of a or b is even. If a is even, say a = 2k, then
ab = 2kb is even, contradiction. Similarly, if b is even then ab is even, contradiction. Therefore, both
a and b must be odd. O

Theorem 5.12 If n? is divisible by 3, then n is divisible by 3.

Proof: Let P be the statement “n? is divisible by 3,” and @ be the statement “n is divisible by
3.” Assume P A —Q: that is, n? is divisible by 3 but n is not divisible by 3. If n is not divisible by 3,
then n =1 (mod 3) or n =2 (mod 3). In both cases,

n?=1 (mod 3),

so n? is not divisible by 3. This contradicts our assumption. Therefore, n must be divisible by 3. O

Often, the antecedent P need not be explicit in contradiction proofs. In what follows, we prove
that /2 which we constructed using ruler and compass in Exercise 3.5 is not a rational number.

Theorem 5.13 /2 is irrational.

Proof: Assume V2 = 2 in lowest terms with p, q € Z>o, ged(p,q) = 1. Then p? = 2¢?, so p is even;
write p = 2r. Substituting, 4r? = 2¢? gives ¢®> = 2r2, hence ¢ is even. Thus p, q share a factor 2,
contradicting lowest terms. O
In this example the antecedent P is the silent statement “the number V2 exists”, and @ is the
statement that /2 is irrational.
Also consider the following examples:

Theorem 5.14 FEvery integer n > 1 has at least one prime factor.

Proof: Let n > 1. If n is prime, then it is its own prime factor.

Otherwise, suppose n is composite. Let d be the smallest divisor of n greater than 1. By definition,
d divides n. We claim that d must be prime.

Suppose, for contradiction, that d is composite. Then d = ab with 1 <a <dand 1 <b < d. But
then a divides d, and since d divides n, we also have a divides n. This contradicts the minimality of
d, because a is a smaller divisor of n greater than 1.

Therefore d must be prime, and hence n has a prime factor in all cases. O

5Buclid’s Elements contains many early examples of proof by contradiction. For instance, in Book 1, Proposition
6, Euclid proves that if two angles of a triangle are equal, the sides opposite these angles are equal by assuming the
contrary and deriving a contradiction. In the section we illustrate two other famous one’s — v/2 is irrational and there
are infinitely many primes. In Indian traditions too, the Jaina mathematicians (c. 6th—-9th c.) often used impossibility
reasoning, e.g. showing that certain infinite processes yield contradictions, to motivate definitions of infinity and
infinitesimals. Bhédskara’s arguments about the impossibility of certain rational approximations can also be read as of
the reductio-style.


https://en.wikipedia.org/wiki/Reductio_ad_absurdum
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Theorem 5.15 Let p be a prime. If p divides n, then p does not divide n + 1.

Proof: ~ Suppose p divides n and p divides n + 1. Then, for some integers a and b, n = pa and
n+ 1= pb.
We then have that (n+ 1) —n =1=p(b— a), or p divides 1, which is impossible. O

Theorem 5.16 There exist infinitely many prime numbers.

Proof:
Assume, to the contrary, that there are only finitely many primes py,ps, ..., p,. Consider the
number
N =pip2---pn +1.

Clearly N > 1 and hence must have a prime divisor. But no p; divides N, since dividing N by any p;
leaves a remainder 1. This contradicts the assumption that pq,...,p, were all the primes. Therefore,
there must exist infinitely many primes © O

Theorem 5.17 There exists an irrational number x such that =2 is rational.

Proof:  Suppose, for contradiction, that no such number exists; that is, whenever x is irrational,

22 is irrational as well. Consider z = v/2. Then z is irrational, but

which is rational. This contradicts our assumption. Hence, there does exist an irrational number x
such that 22 is rational. a

Exercise 5.3 What are the antecedents P and consequents QQ in Theorems 5.16 and 5.17.

When to use contradiction. Contradiction is powerful for showing that something is impossible —
for example irrationality, no smallest positive rational, etc. — but it also works beautifully for proving
existence: to show “there exists an object with property P,” assume that no such object exists, and
derive an inconsistency.

5.3.5 Proof by Contrapositive

In Exercise 5.1 we argued that implications P = @ and =) = —P are logically equivalent. Sometimes
=@ = —P is cleaner because “failing @” has a rigid structure (e.g., divisibility, parity), while @ itself
would require awkward casework.

Theorem 5.18 If n? is odd, then n is odd.

Proof:  Assume that n is even, i.e., n = 2k for some k. Then, n? = 4k? = 2(2k?) is also even. Hence
the contrapositive =) = —P holds, and thus the original implication. O

Theorem 5.19 If n? is divisible by 3, then n is divisible by 3.

Proof: ~ Assume that n is not divisible by 3. Then n = 1 or 2 (mod 3). In both cases n? = 1
(mod 3), so n? is not divisible by 3. Hence the contrapositive =) = =P holds, and thus the original
implication. O

Theorem 5.20 If n does not divide ab, then n does not divide a and n does not divide b.

6This proof was given by Euclid. This is also the first proof from the Proofs from the Book, which was written in
the memory of the Hungarian mathematician Paul Erdds, who liked to talk about The Book, in which God maintains
the perfect proofs for mathematical theorems.


https://en.wikipedia.org/wiki/Proofs_from_THE_BOOK
https://archive.nytimes.com/www.nytimes.com/books/first/h/hoffman-man.html
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Proof:  Let (n divides a) or (n divides b).

If n divides a, then a = nd for some d > 0. Thus ab = ndb = n(db), which implies that n divides
ab.

If n divides b, argue similarly.

Theorem 5.21 Letn € Z. If n? — 6n + 5 is even, then n is odd.

Proof:  Let n be even, i.e., n = 2k for some k. Then, n? — 6n +5 = (2k)? + 6(2k) + 4+ 1 =
2(2k? + 6k + 2) + 1 which is odd. Hence the contrapositive is proved. O

Exercise 5.4 Arqgue that whatever can be proved by contradiction can also be proved by contrapositive,
and vice versa.

Choosing contrapositive. Look for conclusions phrased as “is divisible by -, is even, is nonnegative,
is a subset of -”—their negations often have crisp arithmetical or set-theoretic descriptions that are

easy to exploit.
equivalent
P=Q -Q = -P

Figure 5.3: Proving the contrapositive proves the original implication.

5.3.6 Proof by the Pigeonhole Principle

The Pigeonhole Principle states that if n + 1 or more objects are placed into n boxes, then some
box must contain at least two objects. More generally, if IV objects are placed into k boxes, then
some box contains at least [IN/k] objects”. The pigeonhole principle itself can be proved by either

contradiction or contrapositive &.

Exercise 5.5 Prove the pigeonhole principle using both contradiction and contrapositive.

The pigeonhole principle however merits an independent consideration because this special form
makes several proofs easier. This principle often provides quick existence proofs when explicit
construction is difficult. It guarantees that a certain configuration must exist, even if we cannot
point to the exact example.

Example 5.5 In a group of 18 people, at least two must share a birth month. Here the “bozes” are
the 12 months, and the “objects” are the 13 people. By the pigeonhole principle, some month contains
at least two birthdays.

Here are a few more examples.

Theorem 5.22 Among any n+ 1 integers, there exist two with the same remainder when divided by

n.
Proof:  The possible remainders upon division by n are 0,1,2,...,n — 1, giving n “boxes.” Placing
n + 1 integers into these boxes, two must land in the same box. Therefore two of the integers have
the same remainder. O

7[N/k] is the smallest integer ¢ such that gk > N.

8The first known formal appearance of the pigeonhole is often attributed to the German mathematician Peter
Gustav Lejeune Dirichlet in 1834, who called it the “Schubfachprinzip” (drawer or box principle). The principle appears
indirectly and informally much earlier, dating back at least to 1622 in a Latin work by the French Jesuit mathematician
Jean Leurechon. But Indian combinatorial work (e.g. Pingala’s prosody, c¢. 200 BCE) already involved reasoning about
distributing syllables into patterns — essentially counting arrangements that could be seen pigeonhole-wise. Later, in
combinatorial discussions in the Chandas-sastra and in Bhdskara’s combinatorics, one finds implicit arguments about
“if you have more patterns than slots, something repeats.”
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Theorem 5.23 Given n integers ay, as, . . ., ay, there exists a non-empty subset whose sum is divisible
by n.
Proof:  Consider the partial sums

Sp=a1+ay+---+ap, k=12,...,n.

There are n such sums. If any s, is divisible by n, we are done. Otherwise, each s, has a remainder
in {1,2,...,n—1}. By the pigeonhole principle, two of the s;, s; (say i < j) have the same remainder.
Then s; — s; is divisible by n, and this difference is the sum of the subset {a;t+1,...,a;}. Hence such
a subset always exists. O

Theorem 5.24 In any group of n people, if friendship is always mutual, then at least two people
have the same number of friends.

Proof: Each person can have between 0 and n—1 friends. But it is impossible to have simultaneously
one person with 0 friends and another with n — 1 friends, since the “friend of all” would have to be
friends with the “friend of none.” Therefore, the possible friend counts are at most n — 1 distinct
numbers. With n people, two must share the same friend count. O

5.3.7 Proof by Exhaustion of cases

Sometimes a proposition cannot be proved in one uniform argument, but instead requires us to split
the possible situations into a finite number of cases. A proof by exhaustion of cases works by checking
each case separately and showing that the desired conclusion holds in all of them °. The structure is:

1. Partition the domain of the problem into finitely many exhaustive and mutually exclusive cases.
2. Prove the statement in each case individually using any of the proof techniques.

3. Conclude that the statement holds in general.

This method is indispensable when a property depends on a small number of discrete possibilities,
such as parity (even/odd), sign (positive/negative/zero), or congruence classes modulo n.
Let us consider a few examples.

Theorem 5.25 For any integer n, the number n? +n is even.
Proof: ~We consider two exhaustive cases:

e Case 1: n is even. Then n = 2k for some integer k. So n? +n = (2k)? + 2k = 4k* + 2k =
2(2k? + k), which is even.

e Case 2: n is odd. Then n = 2k + 1 for some integer k. Son? +n = 2k +1)2 + 2k + 1) =
4k? 4+ 6k + 2 = 2(2k? + 3k + 1), which is even.

In either case, n? + n is even. Therefore the theorem holds. O
Theorem 5.26 For any integers a and b, |a|-|b| = |ab|.

Proof: ~'We proceed by cases on the signs of a and b:

9The earliest history of the method of exhaustion can be traced back to Antiphon of Athens (ca. 480-411 BCE), but
the full logical method as a form of a rigorous proof was formalised by Eudoxus of Cnidus (ca 408-355 BCE). There
are several examples in Euclid’s Elements and the work of Archimedes. Aryabhata (5th c.) and Bhéskara II (12th
c.) used case-based reasoning to establish divisibility properties and to reduce large problems to smaller congruence
classes. In the Bijaganita, Bhéskara explicitly gives different rules depending on whether numbers are odd or even — an
early form of modular case-splitting. The most notable example of proof by case analysis is the modern computer
aided proof of the four colour theorem.
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e Case 1: a >0, b > 0. Then |a| = a, |b| =, so |a||b] = ab = |ab|.

e Case 2: ¢ > 0, b < 0. Then |a|] = a, |b] = —b, and |a||b] = a(—=b) = —ab. Since ab < 0,
|ab] = —ab, so equality holds.

e Case 3: ¢ <0,b>0. Then |a| = —a, |b] = b, and |a||b] = (—a)b = —ab. Again ab < 0, so
|ab] = —ab, equality holds.

e Case 4: a <0, b < 0. Then |a| = —a, |b] = =D, so |a||b] = (—a)(—b) = ab. Here ab > 0, so
|ab] = ab, equality holds.

In all possible cases, |a||b] = |ab|. O
Theorem 5.27 There is no solution in integers to (x* — y?) mod 4 = 2.
Proof:

e Case 1: z is even and y is even = 22 = 4m,y? = 4n for some integers m and n =

(22 — y?) = 4(m — n).

e Case 2: z is even and y is odd = z? = 4m,y?> = 4n + 1 for some integers m and n =
(22 —y?) =4(m —n) — 1.

e Case 3: z is odd and y is even = 22 = 4m + 1,52 = 4n for some integers m and n =
(22 —y?)=4(m —n) + 1.

e Case 4: z is odd and y is odd = 22 = 4m + 1,y? = 4n + 1 for some integers m and n =
(22 — y?) = 4(m — n).

In all these four cases (22 — y?) mod 4 # 2. O

Theorem 5.28 An irrational raised to an irrational power may be rational.

Proof:  We already know that /2 is irrational. Let a = \/5\/5 Two cases arise.

e Case 1: a is rational. Then, the proposition is clearly true.

e Case 2: q is irrational. In that case consider aV2 = (\/5\5)‘/i = \/iﬁﬁ = \/52 = 2 which is
a rational.

O

When to use case analysis. Proof by exhaustion is most effective when the number of cases is
small and natural, such as two parities, three sign possibilities, or finitely many congruence classes
modulo n. However, it becomes impractical if the number of cases grows large. As a general strategy,
one should strive to minimize the cases by exploiting symmetry, structure, or general arguments.

5.3.8 Proofs of Equivalence
Often in mathematics we want to prove a statement of the form
P = Q,

which reads “P if and only if @” (abbreviated “P iff Q). This means both P = @ and @ = P hold.
To prove such an equivalence, we usually split the work into two parts:

1. Prove the forward implication P = Q.

2. Prove the reverse implication @ = P.
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Equivalences require a special discussion because sometimes the two directions may use very
different arguments. Consider the following examples.

2

Theorem 5.29 An integer n is even <= n* is even.

Proof: (=) Suppose n is even, say n = 2k. Then n? = (2k)? = 4k? = 2(2k?) is even.

(<) Conversely, suppose n? is even. If n were odd, say n = 2k + 1, then n? = (2k + 1) =
4k% + 4k + 1 = 2(2k? + 2k) + 1, which is odd — a contradiction. Hence n must be even. O
Theorem 5.30 An integer n is divisible by 3 <= the sum of its digits is divisible by 3.

Proof: ~ Write n in decimal expansion as

n =do+ 10d; + 10%dy + - - - + 10%d,,,

where dg,dy, ..., d; are the digits of n.
Since 10 =1 (mod 3), it follows that

10°=1 (mod 3) for every i > 0.

Therefore
n=dy+dy+--+dr (mod3).

(=) Suppose n is divisible by 3. Then n =0 (mod 3). But n = do+dy +---+dj (mod 3). Hence
the digit sum is also congruent to 0 modulo 3, i.e. divisible by 3.

(<) Conversely, suppose the digit sum is divisible by 3. Then dy +dy + - -+ dr = 0 (mod 3).
Since n =dg + - - - + d, (mod 3), it follows that n =0 (mod 3), i.e. n is divisible by 3. O

Theorem 5.31 Let n be a positive integer with decimal form n = 10q + u, where u is the units digit
and q is the number formed by the remaining digits. Then

n is divisible by 7 <= q — 2u is divisible by 7.
Proof:  Working modulo 7, note first that 10 =3 (mod 7), hence
n=10¢+u=3¢+u (mod 7).
Compute the difference
(Bg+u) — (g —2u) =2q + 3u=2(q — 2u) + Tu.

Therefore
3¢g+u=2(¢q—2u) (modT).

Since 2 is invertible modulo 7 (indeed 27! =4 (mod 7)), we have
3¢g+u=0 (mod7) < ¢g—2u=0 (mod?7).
Combining with n = 3¢ + u (mod 7) yields
n=0 (mod7) < ¢—2u=0 (mod7),

Then, (=) If n is divisible by 7, then n = 0 (mod 7). Hence ¢ — 2u = 0 (mod 7), i.e., ¢ — 2u is
divisible by 7.
(<) Conversely, if ¢ — 2u is divisible by 7, then ¢ — 2u =0 (mod 7). Since n = ¢ — 2u (mod 7),
it follows that n =0 (mod 7), i.e., n is divisible by 7.
O
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Example. For n = 483 we have ¢ = 48, u = 3, so ¢ — 2u = 48 — 6 = 42, a multiple of 7. Hence 483
is divisible by 7.

Exercise 5.6 Arqgue that for bigger numbers, the test can be applied repeatedly by computing g — 2u
on the result.

Discussion. When faced with an equivalence, it is often useful to remember that “P <— Q" is
logically the same as “(P = Q) A (Q = P).” Tt is also common to use contrapositive arguments in
one or both directions.

5.3.9 Proof by Induction

Proof by induction is a powerful technique for proving statements that are asserted to be true for all
integers n > ng. The method rests on two steps: establishing a base case and showing that if the
statement holds for an arbitrary integer k, then it must also hold for k + 1.

The Induction Principle

Suppose P(n) is a statement depending on an integer n. To prove that P(n) is true for all integers
n > ng, we proceed as follows:

1. Base case: Verify that P(ng) is true.

2. Induction step: Assume P(k) is true for some arbitrary integer k > ng (this assumption is
called the induction hypothesis), and then show that P(k 4+ 1) must also be true.

If both steps succeed, then by the principle of mathematical induction, P(n) is true for all integers
n > ng 0. Think of a staircase: show you can step onto the first stair (base case) and that from any
stair you can step to the next (inductive step). Then you can reach all stairs.

Exercise 5.7 Prove that strong induction is equivalent to the original induction principle.
Let us consider a few examples of proof by induction below.

Theorem 5.32 For alln > 1,
n(n+1)

1424.-. =
+2+---+n 5

Proof:

Base case: For n = 1, the left-hand side is 1, and the right-hand side is 1—22 = 1. So the statement
holds.

Induction hypothesis: Assume the formula holds for n = k, i.e.

1
1+2+...+k:@_

Induction step: Now consider n = k + 1:

k(k+1) k1) = k(k+1)+2(k+1) (k+1)(k+2).

2 2 2
This is exactly the formula with n = k£ + 1. Hence the result follows. a

1+24 - +k+(k+1) =

10The idea of proof by induction is ancient, though the formal principle was only stated in the nineteenth century.
In the Western tradition, inductive reasoning appears already in Euclid’s Elements (Book IX, Proposition 8) and
in his descent-style proof of prime factorisation (Book VII, Propositions 30-32) [?]. Later, Islamic mathematicians
such as al-Karaji (10th—11th c.) used inductive arguments for binomial expansions [?], and in Europe, Maurolico
(16th c.) and Pascal (17th c.) applied the method in combinatorics and series [?, ?]. By the time of Euler and Gauss,
induction was common in number theory, and Peano (1889) finally codified it as an axiom of the natural numbers [?].
In the Indian tradition, recursive and inductive reasoning also played a central role: Pingala (c. 200 BCE) described
prosodic patterns equivalent to Pascal’s triangle [?], and Bhaskara II (12th c.) used stepwise arguments in the Lilavati
and Brjaganita to establish general formulas [?]. Thus, both traditions employed inductive reasoning long before its
modern formal axiomatization.
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Theorem 5.33 For alln > 1,
143454+ 2n—1)=n%

Proof:
Base case: For n = 1, the left-hand side is 1 and the right-hand side is 12 = 1.
Induction hypothesis: Assume true for n = k, i.e.

L4+3+- -+ (2k—1) =k
Induction step: Then for n =k + 1,
1434+ k-1 +Q2FK+1)—-1)=k+2k+1) = (k+1)%
Thus the claim holds for n = k + 1. a
Theorem 5.34 For alln > 1, 10™ — 1 is divisible by 9.

Proof:

Base case: For n =1, 10' — 1 = 9, which is divisible by 9.

Induction hypothesis: Assume 10¥ — 1 is divisible by 9, i.e., 10¥ — 1 = 9m for some m.
Induction step: Then

1077 —1=10-10F =1 =10(9m +1) — 1 = 90m + 9 = 9(10m + 1).
Thus 105+ — 1 is divisible by 9. ]
Theorem 5.35 For all integers n > 4, 2" > n?.

Proof:
Base case: For n = 4, 2* = 16 and 4% = 16, so the inequality holds with equality. For n = 5,
2% = 32 > 25, so the inequality holds strictly.
Induction hypothesis: Assume 2¥ > k? for some k > 5.
Induction step: Then
okt = 9.9k > 9. k2

Since k > 5, we have 2k? > (k + 1)2. Thus 28! > (k +1)2. O

Theorem 5.36 Suppose we have stamps of two different denominations, 3 paise and 5 paise. We
want to show that it is possible to make up exactly any postage of 8 paise or more using stamps of
these two demominations. Thus we want to show that every positive integer n > 8 is expressible as
n = 3t + 55 where i,5 > 0.

Proof:

Base case: For n =8, we have n =3+ 5,i.e. i =j = 1.

Induction hypothesis: n = 3i+5j forann > 8, 4,5 > 0.

Induction step: Consider n+1. If j = 0 then clearly i > 3 and we may write n+1 as 3(i —3) +5(j +2).
Otherwise n +1=3(i +2) +5(j — 1). O

Strong induction. Strong induction is a variant where we assume the statement holds for all
integers up to k and use this to prove it for k + 1. Suppose P(n) is a statement depending on an
integer n. To prove that P(n) is true for all integers n > ng, we proceed as follows:

1. Base case: Verify that P(ng) is true.

2. Induction step: Assume P(m) is true for all m, ng < m < k for some arbitrary integer k
(this assumption is called the strong version of the induction hypothesis), and then show that
P(k 4 1) must also be true.
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Consider the following example.

Theorem 5.37 Let Fy = 0, F; = 1, Fy, = 1,... be the Fibonacci sequence where for all n > 2,
Fo=F, 1+ F, 5. Let ¢ = (1 ++/5)/2. We now show that F,, < ¢"~1 for all positive n.

Proof:

Base case: For n =1, we have F; = ¢° = 1.

Induction hypothesis: F,, < o1 for allm, 1 <m < n.
Induction step:

Fn+1 = Fn + Fn—l
< ¢" 14+ ¢"2 (by the induction hypothesis)
= ¢"2(o+1)
= ¢" (since ¢? = ¢ + 1)

O

Theorem 5.38 (Fundamental Theorem of Arithmetic) Every integer n > 1 can be written as
a product of primes, and this representation is unique up to reordering of the primes.

Proof:  Existence: We proceed by induction on n. For n = 2, the result holds since 2 is prime.
Assume every integer m with 2 < m < n has a prime factorisation. If n is prime, we are done.
Otherwise, n = ab with 1 < a,b < n. By the induction hypothesis, both a and b factor into primes.
Thus n factors into primes.

Uniqueness: Suppose

n=Dpip2 - Pr = q142" " (gs,

with all p;, ¢; prime. Since p; | ¢i1¢2 - - - ¢, Euclid’s Lemma implies p; | ¢; for some j. As both are
prime, p; = ¢;. Cancelling p; from both sides and repeating the argument gives uniqueness by
induction on the number of prime factors. O

Exercise 5.8 Complete the proof of the unique prime factorization theorem more formally.

Remarks.
e Induction proofs are especially useful for formulas involving sums, products, inequalities, or
divisibility.
e The induction hypothesis is a temporary assumption used to prove the next case; it is not

assumed globally.

e Strong induction is a variant where we assume the statement holds for all integers up to k£ and
use this to prove it for k + 1.

5.3.10 Conclusion

There is no single “best” technique; experienced problem solvers try viewpoints. If definitions seem
aligned, push a direct proof. If “not Q” feels structured, flip to a contrapositive. If a statement
ranges over integers, try induction. If you suspect a claim is too strong, hunt a counter-example.
And whenever “assuming the opposite” quickly generates an impossibility, contradiction is often the
sharpest tool.

Problems

1. Truth Tables

(a) Construct the truth table for (p A q) V (=r).
(b) Verify by a truth table that (p = r) A (¢ = r) is equivalent to (pV q) = r.
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(c) Determine whether (p = ¢) = r and p = (¢ = r) are equivalent.
(d) Show by truth table that p V (¢ A r) is not equivalent to (pV ¢) A (pV r).

2. Three-variable Logic

(a) Construct the truth table for (p @ q) @ r and check whether it is associative.
(b

(c
(d

Verify that =(p A ¢ A ) is equivalent to —p V —q V —r.
Show that (p = ¢) A (¢ = r) does not imply (p = r) by giving a truth table.

NN NN

Identify all assignments of p, g, r for which (pV ¢) = (¢ V r) is false.
3. Vacuous Truth

(a) State a universally quantified claim about an empty set and explain why it is true.

(b) Explain why the statement “If n is an integer with n? = —1, then n is prime” is vacuously
true.

(c) Let A= @. Prove that “For all z € A, 22 = 0” is vacuously true.
(d) Formulate a vacuous truth involving divisibility (e.g. “All integers divisible by both 2 and
3 and equal to 5 are even”), and justify why it is vacuously true.

4. Proof by Explicit Construction

(a) Find integers x,y such that 17z 4+ 29y = 1.
(b) Exhibit an explicit Pythagorean triple different from (3,4, 5) and (5,12, 13).
(¢) Construct a rational number between g and %.

)

(d) Show by construction that there exists an integer solution to 12z 4+ 18y = 6.

5. Proof by Counter-Example

(a) Disprove: “For all integers n, n?

—n + 41 is prime.”

(b) Disprove: “For all integers n, n® + 2 is prime.”

(c) Disprove: “Every integer greater than 2 is the sum of two primes.” (Give a counterexam-
ple.)

(d) Find a counterexample to: “If a divides be, then a divides b.”
6. Direct Proof

(a) Prove that the product of two even integers is even.
(b) Prove that if a is divisible by 12 and b is divisible by 6, then a + b is divisible by 6.
) Show directly that if n is a multiple of 4, then n? is a multiple of 16.

)

(c
(d) Prove directly that if a =b (mod m) and ¢ = d (mod m), then a +c¢=b+d (mod m).

7. Proof by Contradiction
(a) Prove by contradiction that /7 is irrational.
(b)
(c) Prove by contradiction that there are infinitely many primes congruent to 1 modulo 4.
(d) Prove by contradiction that /2 is irrational.

Show by contradiction that there is no integer solution to 2x = 2y + 1.

8. Proof by Contrapositive

(a) Prove: If n? is divisible by 9, then n is divisible by 3.
(b) Prove: If ab is even, then at least one of a or b is even.
(c) Prove: If n? is divisible by 8, then n is divisible by 2.
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(d)

Prove: If 22 is divisible by 12, then z is divisible by 6.

9. Proof by the Pigeonhole Principle

(a)
(b)

()
(d)

Show that among any 8 integers, two leave the same remainder modulo 7.

Prove that in a group of 32 people, at least two share the same day of the month for their
birthday.

Show that in any set of 6 integers, at least three must have the same parity.

Prove that in any group of 367 people, at least two have the same exact birthday (ignoring
leap years).

10. Proof by Exhaustion of Cases

(a
(b
(c
(d

D I

Prove that the cube of any integer is congruent to —1,0, or 1 modulo 7.

Show that if n is an integer, then n? = 0,1,4 (mod 5).

2

By checking cases, show that for any integer n, n® — n is even.

Prove by exhaustion of parities that the product of two consecutive integers is even.

11. Proofs of Equivalence

(a)
(b)

()
(d)

Prove that n is divisible by 2 if and only if n? is divisible by 4.

Prove that a = b (mod n) if and only if a and b leave the same remainder when divided
by n.

Prove that an integer n is divisible by 11 if and only if the alternating sum of its digits is
divisible by 11.

Prove that a and b are both even if and only if a + b is even and a — b is even.

12. Proof by Induction

(a)

Find the fallacy in the following proof by PMI.

Theorem Given any collection of n blonde girls. If at least one of the girls has blue eyes,
then all n of them have blue eyes.

Proof: ~ The statement is obviously true for n = 1. The step from k to k 4+ 1 can be
illustrated by going from n = 3 to n = 4. Assume, therefore, that the statement is true for
n = 3 and let G1, G2, G3, G4 be four blonde girls, at least one of which, say G1, has blue
eyes. Taking (G1, G2, and (3 together and using the fact that the statement is true when
n = 3, we find that Gy and G35 also have blue eyes. Repeating the process with G1, Gs
and G4, we find that G4 has blue eyes. Thus all four have blue eyes. A similar argument
allows us to make the step from k to k + 1 in general. O
Corollary. All blonde girls have blue eyes.

Proof: ~ Since there exists at least one blonde girl with blue eyes, we can apply the
foregoing result to the collection consisting of all blonde girls. O
Note: This example is from G. Pdlya, who suggests that the reader may want to test the
validity of the statement by experiment.

Suban announces to the QRMT class:

“There will be a surprise test next week. You will not know in advance on which day it
will be held.”

One student in the class reasons as follows, by induction on n =5 — k:

e The test cannot be on Friday (the last working day of the week, k = 5,n = 0), because
if it hasn’t happened before then, the class would know it must be on Friday — and
so it would not be a surprise.

e Similarly, the test cannot be on Thursday, because if it hasn’t happened before then,
and Friday has already been ruled out, the class would know it must be on Thursday

— and so it would not be a surprise.
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(i)

e Continuing this reasoning backwards, the test cannot be on Wednesday, Tuesday, or
Monday either.

e Therefore, the teacher cannot give a surprise test at all!

Yet, when Suban gives the test on Wednesday, the students are indeed surprised. Identify
the flaw in the student’s reasoning.

Prove by induction that for all integers n > 1,

1)(2 1
12+22+32+_”_~_n2:”(”+ )6( n+ )

Show by induction that 7" — 1 is divisible by 6 for all integers n > 1.
Prove that for all n > 1, n? — n is divisible by 6.
Prove that for all integers n > 4,
n! > 2",
Show that for all integers n > 1,
3" > 3.
Prove using strong induction that every integer n > 1 can be written as a product of
prime numbers.

A tiling problem: Prove by strong induction that any 2™ x 2™ chessboard with one square
removed can be covered completely by L-shaped trominoes (three-square pieces).
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