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Quantum bits

I Two possible basis states
∣∣0〉 =

[
1
0

]
and

∣∣1〉 =

[
0
1

]
I A qubit can also be in a linear combination (superposition) of states∣∣ψ〉 = α

∣∣0〉 + β
∣∣1〉 α, β ∈ C and |α|2 + |β|2 = 1

I Thus, a qubit is a vector in a 2D vector space over the complex field.

I
∣∣0〉 and

∣∣1〉 are called computational basis states. They form an
orthonormal basis.

I We cannot examine a qubit to determine its state. That is, we
cannot measure α and β. States are unobservable.

I When we measure we get
∣∣0〉 with probability |α|2 or

∣∣1〉 with
probability |β|2. Measurement collapses the system to one of
the basis states.

I qubit’s are decidedly real? Will revisit the issue.
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How much information in a qubit?

I Infinite number of points on the surface of a sphere. Representation
of a state will require infinite number of bits. Can we store the
entire Mahabharat in a qubit?

I Misleading, because measurement will collapse the state to either∣∣0〉 or
∣∣1〉 . Only one bit of information from a measurement.

I But how much information if we do not measure?

I Trick question. But it is hypothesized that when nature evolves
closed quantum systems it maintains all continuous variable. Key to
quantum computation.

I qubit states can be manipulated and transformed in interesting ways
that can lead to meaningful measurement outcomes.
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Multiple qubits

I For two classical bits we can have four states 00, 01, 10 and 11.

I Correspondingly, for a 2 qubit system we have four computational
basis states:

∣∣00
〉

,
∣∣01
〉

,
∣∣10
〉

and
∣∣11
〉

.

I The 2 qubit state is∣∣ψ〉 = α00

∣∣00
〉

+ α01

∣∣01
〉

+ α10

∣∣10
〉

+ α11

∣∣11
〉

=
∑

x∈{0,1}2 αx

∣∣x〉
I We could measure only the first qubit. If we get

∣∣0〉 wp
|α00|2 + |α01|2, the post measurement state is

∣∣ψ′〉 =
α00

∣∣00
〉

+ α01

∣∣01
〉√

|α00|2 + |α01|2
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Hilbert space is a very large space

I Tensor product of two vector spaces V (dimension k) and W
(dimension l) is V ⊗W (dimension kl). If

∣∣v1〉 ∣∣v2〉 . . . ∣∣vk〉 and∣∣w1

〉 ∣∣w2

〉
. . .
∣∣wl

〉
are the bases for V and W , then a basis for

V ⊗W is {
∣∣vi〉 ⊗ ∣∣wj

〉
: 1 ≤ i ≤ k , 1 ≤ j ≤ l}.

I Hilbert space is a very large space. Nature seems to find extra
storage when we combine two subsystems.
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Entangled states: a key component of quantum computing

I A fantastic 2 qubit state is the Bell state or EPR pair

∣∣ψ〉 =

∣∣00
〉

+
∣∣11
〉

√
2

I There are no single qubit states
∣∣a〉 and

∣∣b〉 such that
∣∣ψ〉 =

∣∣ab〉 .

I On measuring the first qubit we get
∣∣0〉 or

∣∣1〉 with equal
probability.

I Post measurement state is
∣∣ψ′〉 =

∣∣00
〉

or
∣∣ψ′〉 =

∣∣11
〉

.
Measurement of the second qubit gives exactly the same result as
the first.

I The two qubits are correlated or entangled.

I The measurement correlations in the Bell state is stronger than
could exist in two components of any classical system.

I ‘Spooky action at a distance”
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Quantum computation

I In the classical circuit model computational algorithms are described
by wires and logic gates (NAND).

I Only one non-trivial 1 bit gate - NOT.

I Quantum analogue: α
∣∣0〉 + β

∣∣1〉 → α
∣∣1〉 + β

∣∣0〉 (the quantum
NOT acts linearly).

I Can be represented by a matrix

X =

[
0 1
1 0

]
; X

[
α
β

]
=

[
β
α

]
I All quantum gates U must be unitary operators: U†U = I .

I Quantum operations are reversible.
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Important single qubit gates

I Pauli matrices:

X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]
;

I Hadamard:

H =
1√
2

[
1 1
1 −1

]
α|0〉+ β|1〉 H α |0〉+|1〉√

2
+ β |0〉−|1〉√

2

I Rotation:

U =

[
cos θ − sin θ
sin θ cos θ

]
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Multiple qubit gates

Controlled NOT (CNOT)

|A〉 • |A〉

|B〉 ⊕ |B ⊕A〉

∣∣00
〉
→
∣∣00
〉

;
∣∣01
〉
→
∣∣01
〉

;∣∣10
〉
→
∣∣11
〉

;
∣∣11
〉
→
∣∣10
〉

Derive that UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Swap

|A〉 • ⊕ • |B〉

|B〉 ⊕ • ⊕ |A〉

∣∣A,B〉 →
∣∣A,A⊕ B

〉
→

∣∣A⊕ (A⊕ B),A⊕ B
〉
=
∣∣B,A⊕ B

〉
→

∣∣B, (A⊕ B)⊕ B
〉
=
∣∣B,A〉

A typical quantum circuit
|q0〉 • •

V

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉 X Z
U

|q2〉 • •
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Quantum copying?

Classical cloning

x
C

x

y = 0 x⊕ y = x

Quantum cloning?

α|0〉+ β|1〉 • α|0〉+ β|1〉

|0〉 ⊕ α|0〉+ β|1〉[
α
∣∣0〉 + β

∣∣1〉 ] ∣∣0〉 = α
∣∣00
〉

+ β
∣∣10
〉
→ α

∣∣00
〉

+ β
∣∣11
〉

Have we cloned? For a general state ψ = α
∣∣0〉 + β

∣∣1〉 ,∣∣ψ〉 ∣∣ψ〉 = α2
∣∣00
〉

+ αβ
∣∣01
〉

+ αβ
∣∣10
〉

+ β2
∣∣11
〉

Actually quantum cloning is not possible
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The no-cloning theorem

I Suppose source slot A and the target slot B start out with
∣∣ψ〉 and∣∣s〉 respectively. Initial state is∣∣ψ〉 ⊗ ∣∣s〉

I Suppose some unitary U effects the copying procedure∣∣ψ〉 ⊗ ∣∣s〉 U−→ U(
∣∣ψ〉 ⊗ ∣∣s〉 ) =

∣∣ψ〉 ⊗ ∣∣ψ〉
I Suppose this works for two states

∣∣ψ〉 and
∣∣φ〉 . Then

U(
∣∣ψ〉 ⊗ ∣∣s〉 ) =

∣∣ψ〉 ⊗ ∣∣ψ〉
U(
∣∣φ〉 ⊗ ∣∣s〉 ) =

∣∣φ〉 ⊗ ∣∣φ〉
I The inner product of the two equations gives us〈

φ
∣∣ψ〉 = (

〈
φ
∣∣ψ〉 )2

I x = x2 implies x = 0 or x = 1. So, either
∣∣φ〉 =

∣∣ψ〉 , or
∣∣φ〉 and∣∣ψ〉 are orthogonal. Therefore, a general cloning device is not

possible.
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Primitives for quantum computations: Hadamard
transformation

I

H =
1√
2

[
1 1
1 −1

]
I Use Hadamard and CNOT to produce the Bell states

|x〉 H •

|y〉 ⊕∣∣00
〉
→

(∣∣00
〉

+
∣∣11
〉 )
/
√

2 = β00∣∣01
〉
→

(∣∣01
〉

+
∣∣10
〉 )
/
√

2 = β01∣∣10
〉
→

(∣∣00
〉
−
∣∣11
〉 )
/
√

2 = β10∣∣11
〉
→

(∣∣01
〉
−
∣∣10
〉 )
/
√

2 = β11
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Quantum teleportation

I Alice and Bob separated after generating an EPR pair. Alice now wants to
transfer

∣∣ψ〉 to Bob. Top two qubits are Alice’s, the last one is Bob’s.

I ∣∣ψ0

〉
=
∣∣ψ〉 ∣∣β00〉 =

1√
2

[
α|0〉

(
|00〉+ |11〉

)
+ β|1〉

(
|00〉+ |11〉

)]
I ∣∣ψ1

〉
=

1√
2

[
α|0〉

(
|00〉+ |11〉

)
+ β|1〉

(
|10〉+ |01〉

)]
I ∣∣ψ2

〉
= 1

2

[
α
(
|0〉+ |1〉

)(
|00〉+ |11〉

)
+ β

(
|0〉 − |1〉

)(
|10〉+ |01〉

)]
= 1

2

[
|00〉

(
α|0〉+ β|1〉

)
+ |01〉

(
α|1〉+ β|0〉

)
+|10〉

(
α|0〉 − β|1〉

)
+ |11〉

(
α|1〉 − β|0〉

)]
Quantum computing basics



Quantum teleportation

Depending on Alice’s measurements

00 −→ |ψ3(00)〉 =
[
α|0〉+ β|1〉

]
Bob has

∣∣ψ〉
01 −→ |ψ3(01)〉 =

[
α|1〉+ β|0〉

]
Bob applies X

10 −→ |ψ3(10)〉 =
[
α|0〉 − β|1〉

]
Bob applies Z

11 −→ |ψ3(11)〉 =
[
α|1〉 − β|0〉

]
Bob applies X and Z
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Primitives for quantum computations: Hadamard
transformation

I Parallel action of two Hadamard gates: H⊗2

|0〉 H

|0〉 H(∣∣0〉 +
∣∣1〉√

2

)(∣∣0〉 +
∣∣1〉√

2

)
=

∣∣00
〉

+
∣∣01
〉

+
∣∣10
〉

+
∣∣11
〉

2

I H2n = H⊗n is the Fourier transform over the abelian group Z2n .

I H2n is the 2n × 2n matrix in which the (x , y) entry is 2−n/2(−1)x.y
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Primitives for quantum computations: Hadamard
transformation

I Applying H2n to the state of all zeroes give an equal superposition

H2n
∣∣0 . . . 0〉 =

1√
2n

∑
x∈{0,1}n

∣∣x〉
I Applying H2n to a state

∣∣u〉 modifies the above superposition by a
phase

H2n
∣∣u〉 =

1√
2n

∑
x∈{0,1}n

(−1)u.x
∣∣x〉

I Extremely efficient: n gates produce equal superposition of 2n states.

I In general, if we start with
∣∣φ〉 =

∑
x αx

∣∣x〉 , after Fourier transform

over Z2n we get
∣∣φ̂〉 =

∑
x α̂x

∣∣x〉
I To read the answer we must make a measurement. We obtain x

with probability |α̂x |2 (Fourier sampling).
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