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Quantum bits

> Two possible basis states [0) = [ é } and [1) = [ 2 }

» A qubit can also be in a linear combination (superposition) of states
[0) —al0) +81) afEC and [af+|5P =1

» Thus, a qubit is a vector in a 2D vector space over the complex field.

> |O> and ’1> are called computational basis states. They form an
orthonormal basis.

» We cannot examine a qubit to determine its state. That is, we
cannot measure o and (3. States are unobservable.

> When we measure we get |0) with probability [o|? or [1) with
probability |3|>. Measurement collapses the system to one of
the basis states.
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» qubit's are decidedly real? Will revisit the issue. i



How much information in a qubit?

» Infinite number of points on the surface of a sphere. Representation
of a state will require infinite number of bits. Can we store the
entire Mahabharat in a qubit?

» Misleading, because measurement will collapse the state to either
|0) or [1). Only one bit of information from a measurement.

» But how much information if we do not measure?

» Trick question. But it is hypothesized that when nature evolves
closed quantum systems it maintains all continuous variable. Key to
quantum computation.

» qubit states can be manipulated and transformed in interesting ways
that can lead to meaningful measurement outcomes.
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Multiple qubits

» For two classical bits we can have four states 00, 01, 10 and 11.

» Correspondingly, for a 2 qubit system we have four computational
basis states: |00), [01), [10) and |11).

» The 2 qubit state is
[¥) = a00|00) + ao1|01) + a10]10) + a11|11) =37, c1g1y2 Ox|X)

» We could measure only the first qubit. If we get ‘O) wp
|cvoo|? + |cro1|?, the post measurement state is

B 0400‘00> + Qo1 ‘01>

Y =
v Vlawol? + |aor 2

AR

) asHoKa

N/ UNIVERSITY
&=

Quantum computing basics



Hilbert space is a very large space

> Tensor product of two vector spaces V (dimension k) and W
(dimension /) is V @ W (dimension k). If |v1) [v2) ... |v) and
|wi) [wa) ...|w) are the bases for V and W, then a basis for
Vo Wis{|v) @ |w) :1<i<k1<j<I}

» Hilbert space is a very large space. Nature seems to find extra
storage when we combine two subsystems.
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Entangled states: a key component of quantum computing

» A fantastic 2 qubit state is the Bell state or EPR pair

_ [00) +[11)
e

> There are no single qubit states |a) and |b) such that [¢) = |ab).

[4)

» On measuring the first qubit we get |O> or |1> with equal
probability.

» Post measurement state is |@//> = ’00> or |1/J’> = |11>.
Measurement of the second qubit gives exactly the same result as
the first.

» The two qubits are correlated or entangled.

» The measurement correlations in the Bell state is stronger than
could exist in two components of any classical system.

» ‘Spooky action at a distance”
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Quantum computation

» In the classical circuit model computational algorithms are described
by wires and logic gates (NAND).

» Only one non-trivial 1 bit gate - NOT.

Quantum analogue: a|0> +B|1> — a|1> +B|O> (the quantum
NOT acts linearly).

» Can be represented by a matrix

=[] x5 =[]

» All quantum gates U must be unitary operators: UTU = I.

v
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Quantum operations are reversible.
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Important single qubit gates

» Pauli matrices:

» Hadamard:

a|0) + 8|1 — H }_ [0) +|1> 4 5'0 —|1>

» Rotation:

| cosf —sinf
“ | sin@ cosf
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Multiple qubit gates

Controlled NOT (CNOT)

A) —e— A
14 Y 00y - Jooy; Jor) — Jor)
B) == BoA)  J10) - [11); [11) — |10

1 0 0 0
Derive that UCN{ 8 é g 2 :|

0o 0 1 o0

Swap
) B) |AB) — |AADB
- |A®(A®B),A®B) =|B,A®B)

|B) |A) - |B,(A®B)® B) =|B,A)

A typical quantum circuit
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Quantum copying?

Classical cloning
€r ———— €T

C
y=0= Thy==

Quantum cloning?
a|0) + BH:L a|0) + B|1)
10) @|0) + B|1)
[@[0) +B|1)]]0) = «|00) + B|10) — a|00) + B|11)

Have we cloned? For a general state 1) = «|0) + 1),

[#) [¢) = o%[00) +aB01) +aB[10) + 5%[11)
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’Actually quantum cloning is not posmble‘




The no-cloning theorem

» Suppose source slot A and the target slot B start out with ]g[z) and
|s) respectively. Initial state is

[4) ®s)
» Suppose some unitary U effects the copying procedure
[0) @ |s) = U(¥) @|s)) = |v) @ [v)
> Suppose this works for two states |¢/) and |¢). Then

!¢> s))=[v) @)

U(lo) @|s)) =6) @|¢)
» The inner product of the two equations gives us

(o) =((|v))*

» x = x? implies x = 0 or x = 1. So, either |¢> W or |¢> nd

=\
) are orthogonal. Therefore, a general cloning device is né“’t ) asHOKa
possible.
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Primitives for quantum computations: Hadamard

transformation

=5[]

» Use Hadamard and CNOT to produce the Bell states

o) — H |

y)
00) — (|00) + |11)) /v2 = fBoo
|01) — (|o1) +[10))/V2=Bn
|10) — (|00) —[11))/v2 = B0
}11> - (’01> _|10>)/\@=511




Quantum teleportation

) [ (B 2
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16oo)
{ Xz — 1)

+ t 7
[0) [¢1) [2)  [t3) 1)

» Alice and Bob separated after generating an EPR pair. Alice now wants to
transfer ‘¢> to Bob. Top two qubits are Alice's, the last one is Bob's.

>
o) = | |Boo) = [a|0> (100) + [11)) + BI1) (j00) + [11))]

[02) = 5 [010)(100) + 1)) + BI1)(10) + lo2))

[w2) = 3[a(0)+ 1) (100) + [11)) + B(10) — 1)) (I10) + [01)) ]
7100} (al0) + BI1)) +[01)(al1) + 5]0)) N
+110) (al0) — B11)) +[11) (af1) — ]0))] \ & b
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Quantum teleportation

Depending on Alice's measurements

00— [1h3(00)) = [a]0) + A|1) Bob has |1)

01 — |¢¥3(01)) = |a|1) + 8/0) Bob applies X

10 — |¢5(10)) = |[«|0) — B|1) Bob applies Z
11— |ih5(11)) = [a|1) — BJ0)] Bob applies X and Z
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Primitives for quantum computations: Hadamard

transformation

» Parallel action of two Hadamard gates: H®?

0y — H |-
0) — H
({0} +\1>> <|o> + |1>> _ |00) +1o1) +J10) +|11)
V2 V2 2

» Hon = H®" is the Fourier transform over the abelian group Zon.
> Hon is the 2" x 2" matrix in which the (x, y) entry is 2"/2(—1)*¥
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Primitives for quantum computations: Hadamard

transformation

» Applying Hx» to the state of all zeroes give an equal superposition

0...0) = \/127 Dby

xe{0,1}n

Hor

» Applying Ho to a state |u> modifies the above superposition by a

phase .
0 = 3 1)

x€{0,1}n

Hor

» Extremely efficient: n gates produce equal superposition of 2" states.

» In general, if we start with ’¢> =3 ax|x> , after Fourier transform
over Z» we get }c/A)> =3 &X|x>

> T<? read the-a.nswi:r \;ve must_ make a n_1easurement. We obte\%@:‘\ asHoKa
with probability |dx|* (Fourier sampling). NS/ unIvERSITY
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