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1 Lecture#1 (Jan 20)

[Linear Algebra Review]
[Vector Spaces] Throughout, all vector spaces are over the complex field C
[Notation.] Vectors in a vector space V are denoted using Dirac notation, e.g., |v) € V.

[Inner Product] An inner product on a vector space V' is a map (-,-) : V x V — C that satisfies the
following properties:

L (Jo) Yo i [wi) = S0y al[o)  [wn)), where ¢; € C
2. (o) fu}) = (ju) o)

= (
(lv),|v)) > 0 (it is equal to 0 if and only if |[v) =0 )

We also write the inner product as (v|w). A inner product space is a vector space equipped with an inner
product. The norm of a vector |v) € V is defined by || |v) || = /{(v|v).

[Exc] Show that (32i; i [vi) , [w)) = 325, ¢ ([vi) , [w))

[Linear Operator| For vector spaces V, W, a map/operator A : V — W is called linear if
Alafv) + Blw)) = aA(|v)) + BA(|lw))

for all a, 8 € C and |v), |w) € V.

[Linar Operator vs Matrix Representation] Let V' and W be vector spaces with ordered bases
{lvi)}izq and {|w;)}JL,, respectively. Let A be an m x n matrix with entries in C. Define a map
Ta:V — W as follows: for [v) € V written as |v) = Y1 a; |vg), set Afv) = 337", B [w;) where the
coefficients B; are given by

B a1

—A.

Bm &7
Check that Ty is linear.

Conversely, given any linear operator 7' : V' — W, there exists an m x n matrix A over C (depending on
the chosen bases of V' and W) such that T' = Ty.

[The Pauli Matrices| Four particularly important matrices that describe linear operators A : C? — C?
are the Pauli matrices:



1 0
S

0 1
1 0
0 —1 1 0
A
[Dual: (v|] For any vector |v) € V, define the map (v|: V — C as follows: for any |w) € V,

(0] (Jw)) = (vfw)
Check that (v| is a linear operator. Suppose {[|i)} be an orthonormal basis of V. Then, the matrix
representation of (v| is given by: let [v) =3~ ; [i). Take any |w) = _, B;|j) € V. Then

B
(v (Jw)) = (v|w) = [af,...,a5] - |
Bn
Indeed,

() = (o)
= Y81

= Zafﬁj(m 7))
= Zafﬁi

[Outer Product] For |v) € V, |w) € W, define the outer product maps |w){v| : V. — W as follows: for
any [v) € V

[w)(wl(jv)") = |w) (v]v')
Claim Outer product is linear.
[Completeness Result] Let {|i)} be an orthonormal basis of V. Then ) |i)(i| = Iy.
Proof: Take any |v) € V. Let v =), «;|i). Then

(Z\i><il)(lv>) = D (D))

I
&M -
=
=
P
=
=
~—

= ZW @i
= |v)

[Fact] Let V and W be inner product spaces with {|v;)} and {|w;)} as orthonormal bases respectively.
Let A:V — W be any linear operator. Then

A= (wjlAlv) |w;) (il
1,7
where (w;|Alv;) = (Jw;), Alv;)) € C.
Proof: We first write,



A = IwAly

(O s ACY fo o)
3wy ) A )

i,J

For a fix 4, and for any |v) € V, we have

(lwg) (wi ) A(foa) (i) (0)) = (Jw;)(w;|) Afvi) {vilv)
|w;)(w;)(vilv) A fvs)

(
(
(viv) (Jw;) {w;]) Afvi)
(
(
(

v
vilv) [wy) (wj|Alv;)
wj| Alvi) (vilv) [w;)

w;| Alvi)|w;) {vi|(Jv))

Therefore, as a map, |w;)(w;|)A(|vi) (vi| = (w;|Alvi)|w;){v;|. Hence,

A= Z\wJ wjl)Aljos(vil) = Y (wjlAfwi) |w;) (i

(2]

2 Lecture#2 (Jan 23)

[Exc] Consider the linear operator Az : C?> — C? defined by the matrix Z = [(1) 01]. Let {|0) =

B] 1) = [ﬂ } be the standard basis. Show that

Az = |0)(0] = [1)(1]

[The Cauchy-Schwarz Inequality| For any vectors |[v),|w) € V,
[{vw)]* < (v|v)(w]w)

Proof:

[Adjoint] Consider the inner product spaces V and W. For any linear operator A : V' — W, the adjoint
of A, denoted by AT, is the unique oeprator A : W — V such that

(), Alw)) = (AT |v), |w)), for all |[v) € V, and |w) € W

[Exc] Show that AT is unique and also it is linear.

[Exc] (Av), |w>) (Jv), AT |w)), for all [v) € V and |w) € V
[Exc] (AN =

[Exc] For linear operators A, B, show that (AB)" = BT AT.

[Dual] For any |v) € V, consider the linear operator S,y : C — V defined as follows: for any a € C,
Sipy (@) = a|v). Then
[v)
(Sjuy)" = (vl



where (v| : V — C is the dual linear operator corresponding to [v). We drop the notation S, and using
|v) to think of it as the corresponding operator and therefore write

Proof: Take any o € C and |u) € V.

Sy (@), [u)) = (v}, |u))

Therefore, (S),y)! = (v], i.e., o)t = (u].

[Exc] For any linear operator A and |v) € V, we have (A |v))T = (v| A
[Fact] For any |0}, ) € V, (w){o])t = [u)w]

Proof: Take any |v;) € V and |wy) € W. Then

(lw){([v) 1), w1)) =

), Jw) fw))
t

Therefore, (Jw)(v|)t = |v)(w].
[Exc] Show that (3, a;A;))T =3, a* Al

[Self-adjoint or Hermitian] A linear operator A : V — V is self-adjoint or Hermitian if

AT =4

[Exc] The outer product |v)(v| is self-adjoint.

[Projector] Let V be an inner product space of dimension m and W be a subspace of V' of dimension n.
Let {|1),]2),...,|n)} be an orthonormal basis of W and {|1),...,|n),|n+1),...,|m)} be an orthonormal
basis of V. Let P =37 | |i)(i|. Then P is an orthogonal projector on the subspace W.

[Unitary Operator| An operator A is called unitary if ATA = 1.
[Exc] If A is an unitary operator, then AAT =T

[Exc] Unitary operators preserve inner products, i.e., if U is an unitary operator, then, for all |v), |w),
we have

(lv), [w)) = (U o), U [w))
Indeed, (U [v),U |w)) = (UTU |v), |w)) = (I |v) , |[w)) = (v} , [w)).

[Outer product representation of any unitary U] Let {|v;)} be any orthonormal basis set. Define



lw;) = U |v;), so {|w;)} is also an orthonormal basis set. Then

v = iZ<wle|vi>le><vil
i(le> U o)) lwj) (il
i(Ulvﬁ U i) [wj) (vil
= i(UTUlvj>7lvi>)le><vil
le:(IW s [vi)[ws) (il

Z |ws) (vil

i

[Orthogonal Decomposition] A orthogonal decomposition for an operator A : V' — V is a representa-
tion
i

where {[i)} form an orthonormal set of eigenvectors for A, with corresponding eigenvalues \;.

3 Lecture#3 (Jan 27)

The Postulates of Quantum Mechanics

Quantum mechanics provides a mathematical and conceptual framework for the development of laws a
physical system must obey. In the following we give a description of the basic postulates of quantum
mechanics.

Postulate 1(State Space)

» Associated to any isolated physical system is an inner product space V over C known as the state
space of the system. The system is completely described by its state vector 1) € V, which is a unit
vector, i.e., (¥|y) = 1.

Postulate 2 (Evolution)

» The evolution of a closed quantum system is described by a unitary operator. Specifically, if the
system is in the state |¢)) at time ¢, then its state [¢)) at time ¢5 is given by

|'(/)/> = Ut1,t2 |'¢)>?

where Uy, +, is a unitary operator that depends only on the times ¢; and 5.

Postulate 3 (Quantum Measurement)

» A quantum measurement is described by a collection of measurement operators {M,,}" _; acting
on the state space of the system. These operators satisfy the completeness relation

Zn: MM, =1

m=1



If the system is in the state |¢)) prior to measurement, then the measurement produces a classical
outcome m with probability
Pm] = ([ M), Mo |19).

Conditioned on obtaining classical outcome m, the post-measurement quantum state of the system

is
My, |9)

@M [0

Thus, the measurement can be viewed as a random experiment whose outcome is the pair

(m, [$m))

where m represents the classical measurement outcome and |t),,,) is the corresponding post-measurement
quantum state.

|thm) =

[Exc] Show that > _, P[m] =a
Proof:
L= ([¢),[¥)
= (1), T|))
= ([0}, O MEMp) (1))

= D (1), M, M (I9)))

m

= > (WM My |p)

= > P

4 Lecture#4 (Jan 30)

[Exc] Consider a quantum mechanical system with state space C? (with {|0),|1)} as basis) and the current
state vector 1) = o |0)+3|1) with (1[1)) = |a|?+]|8|*> = 1. Suppose we attempt to measure the state using
the following collection of measurement operators given by the outer products { My = |0)(0], M7y = [1){1]}
satisfying completeness property. As per the Postulate #3, the possible set of post-measurement outputs
are:

(0, [to) = \/W%) with probability (| M Mo|y), and (1,]¢) = \/W#M) with probability
(| M M),
Check that
(WIMIMol) = (|}, M Mo |4))
= (Mo |y), Mol))
= ((10){0))(x]0) + B[1)), ([0){0[)(c[0) + B 1)))
= (a(|0){0)([0)) + B(|0)(0))(|1)), a(|0)(0])(10)) + B(0)(O)(|1)))
= (a]0)(0[0) + 810) (0[1), |0} (0]0) + 20} (0[1))
= (al0),al0))
= a’a((0),]0))
= |af?
Similarly, (1|M] M |ip) = |B|2. Therefore, |1ho) = m = (TlTO|> and |¢1) = \/ﬁ = %



Postulate 4 (Composite Systems)

Suppose a composite quantum system made up of two (or more) distinct physical systems. The state
space of this composite system is the tensor product spaces of the component physical systems. Moreover,
if we have systems numbered 1 through n, and system number i is prepared in the state |1}, then the
joint state of the total system is [1)1) ® |1)2) ® -+ @ |tp).

Tensor Products

Let V, W be vector spaces over C.

- For every |v) € V and |w) € W, introduce a formal symbol |[v) @ |w). Let F be the set of all finite
formal linear combinations

T
F= {Zak log) ® |wg) | 7€ Nyay € C, |vg) €V, |Jwy) € W}
k=1

Addition and scalar multiplication are defined term wise, so F' is a vector space (the free vector space
generated by the symbols [v) ® |w)). Note that the zero element in F'is given by >, 0(|vx) ® |wy))

e Let R C F be the subspace generated by the following elements: for every |v),|v1),|ve) € V,
|w) , |wi), |we) € W, and a € C

Finally, the tensor product is defined as the quotient vector space

VoW =F/R

[Fact] Let {|7)}/2, and {|7)}7_, be the bases of V and W respectively. The basis of V' ® W is given by

{ls) ® ‘j>}1§z§m,1§j§n. Therefore dimension of V ® W is mn.

Brief Sketch: Take any |v) ® |w). Suppose [v) = > a; |i) and |w) = > B; 7). Then

(> aline > s10)
Sl e (Y 81)

7

Z(ai 1) © (85 15))
Zaz @ (Bj 7))
= Zalﬂ] & |J )

|v) @ [w)

[Exc] If V and W are inner product spaces over C, then V ® W is also an inner product space, where the
inner product is given by

Zai [vi) ® |w;) ’Zﬁj lvi) @ |w}) | = Z a; Bi(Jvi) s [v)) ([wi) 5 [w}))



[Exc] Consider the vector space C? with orthonormal basis {|0),|1)}. Consider the tensor product space
C? ® C?. Its basis is given by

{10) ©10),10) ® |1}, [1) @10), [1) @ [1)}

We use the following natural labels for the basis elements:

[Exc] Not every element of the tensor product space V@ W can be written as a simple tensor of the form
[v) ® |w), with [v) € V and |w) € W.

Consider the space C>®C? and the vector % |00) + % [11). We claim that this vector cannot be expressed

as |v)®@|w), for any |v), |w) € C2. ISuppose, for the sake of contradiction, that % |OO>+% [11) = |v)®|w)
where |[v) = a9 |0) + a1 |1) and |w) = Bo |0) 4+ B1 |1). Then

= 100) + = [11) = (ao]0) + a1 1) (00 + 5 1)

V2 V2
ap o |0> ® |O> + a1 |0> (9 ‘1> + a1 8o |1> X |O> + a1 51 |1> ® ‘1>
aoﬁo |00> + aoﬂl |01> + alﬂo |10> + 04151 |11>

This implies, apBy = 1, apf1 = 0, a1y = 0, and a;81 = 1. These equations cannot be satisfied
simultaneously. Hence, % |00) + % |11) can not be written as a simple tensor |[v) & |w).

[Tensor of Linear Operators]

Let V and W be two vector space with bases {|i)} and {|j)} respectively. Take any linear operators
A:V =V and B: W — W'. The tensor product of A and B, denoted as A® B, is a linear map defined
as follows: for any basis element |i) ® |7), define (A ® B)(|i) ® |j)) = A|i) ® B|j), and extend linearly, i.e,

for any 3 ai; |i) @17), (A® B)(3_ aij i) @15)) = o i (A ® B)([i) @ 15))-
[Exc] Show that (A ® B)T = AT @ BT.
Take any |v) € V,|w) € W, |v') € V', |w’) € W', we have

((A@ B)(jv) ® [w)), [v) @ [w’))

|
—~ o~~~

Therefore, (A ® B)! = AT @ Bf.
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