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Lecture Notes

Mahavir Jhawar and Subhashis Banerjee

1 Lecture#1 (Jan 20)

[Linear Algebra Review]

[Vector Spaces] Throughout, all vector spaces are over the complex field C

[Notation.] Vectors in a vector space V are denoted using Dirac notation, e.g., |v〉 ∈ V .

[Inner Product] An inner product on a vector space V is a map (·, ·) : V × V → C that satisfies the
following properties:

1. (|v〉 ,
∑n
i=1 ci |wi〉) =

∑n
i=1 ci(|v〉 , |wi〉), where ci ∈ C

2. (|v〉 , |w〉) = (|w〉 , |v〉)∗
3. (|v〉 , |v〉) ≥ 0 (it is equal to 0 if and only if |v〉 = 0 )

We also write the inner product as 〈v|w〉. A inner product space is a vector space equipped with an inner
product. The norm of a vector |v〉 ∈ V is defined by || |v〉 || =

√
〈v|v〉.

[Exc] Show that (
∑n
i=1 ci |vi〉 , |w〉) =

∑n
i=1 c

∗
i (|vi〉 , |w〉)

[Linear Operator] For vector spaces V,W , a map/operator A : V →W is called linear if

A(α |v〉+ β |w〉) = αA(|v〉) + βA(|w〉)

for all α, β ∈ C and |v〉 , |w〉 ∈ V .

[Linar Operator vs Matrix Representation] Let V and W be vector spaces with ordered bases
{|vi〉}ni=1 and {|wj〉}mj=1, respectively. Let A be an m × n matrix with entries in C. Define a map

TA : V → W as follows: for |v〉 ∈ V written as |v〉 =
∑n
i=1 αi |vi〉, set A |v〉 =

∑m
j=1 βj |wj〉 where the

coefficients βj are given by β1...
βm

 = A ·

α1

...
αn


Check that TA is linear.

Conversely, given any linear operator T : V → W , there exists an m× n matrix A over C (depending on
the chosen bases of V and W ) such that T = TA.

[The Pauli Matrices] Four particularly important matrices that describe linear operators A : C2 → C2

are the Pauli matrices:
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I =

[
1 0
0 1

]
X =

[
0 1
1 0

]

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
[Dual: 〈v|] For any vector |v〉 ∈ V , define the map 〈v| : V → C as follows: for any |w〉 ∈ V ,

〈v| (|w〉) = 〈v|w〉

Check that 〈v| is a linear operator. Suppose {|i〉} be an orthonormal basis of V . Then, the matrix
representation of 〈v| is given by: let |v〉 =

∑
i αi |i〉. Take any |w〉 =

∑
j βj |j〉 ∈ V . Then

〈v| (|w〉) = 〈v|w〉 =
[
α∗1, . . . , α

∗
n

]
·

β1...
βn


Indeed,

〈v| (|w〉) = 〈v|w〉
= (

∑
i

αi |i〉 |
∑
j

βj |j〉)

=
∑
i,j

α∗i βj(|i〉 , |j〉)

=
∑
i

α∗i βi

[Outer Product] For |v〉 ∈ V , |w〉 ∈ W , define the outer product maps |w〉〈v| : V → W as follows: for
any |v〉′ ∈ V

|w〉〈v|(|v〉′) = |w〉 〈v|v′〉

Claim Outer product is linear.

[Completeness Result] Let {|i〉} be an orthonormal basis of V . Then
∑
i |i〉〈i| = IV .

Proof: Take any |v〉 ∈ V . Let v =
∑
i αi |i〉. Then

(
∑
i

|i〉〈i|)(|v〉) =
∑
i

(|i〉〈i|)(|v〉)

=
∑
i

|i〉 〈i|v〉

=
∑
i

|i〉αi

= |v〉

[Fact] Let V and W be inner product spaces with {|vi〉} and {|wj〉} as orthonormal bases respectively.
Let A : V →W be any linear operator. Then

A =
∑
i,j

〈wj |A|vi〉 |wj〉〈vi|

where 〈wj |A|vi〉 = (|wj〉 , A |vi〉) ∈ C.

Proof: We first write,
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A = IWAIV

= (
∑
j

|wi〉〈wj |)A(
∑
i

|vi〉〈vi|)

=
∑
i,j

(|wj〉〈wj |)A(|vi〉〈vi|)

For a fix i, j and for any |v〉 ∈ V , we have

(|wj〉〈wj |)A(|vi〉〈vi|)(|v〉) = (|wj〉〈wj |)A |vi〉 〈vi|v〉
= (|wj〉〈wj |)〈vi|v〉A |vi〉
= 〈vi|v〉(|wj〉〈wj |)A |vi〉
= 〈vi|v〉 |wj〉 〈wj |A|vi〉
= 〈wj |A|vi〉〈vi|v〉 |wj〉
= 〈wj |A|vi〉|wj〉〈vi|(|v〉)

Therefore, as a map, |wj〉〈wj |)A(|vi〉〈vi| = 〈wj |A|vi〉|wj〉〈vi|. Hence,

A =
∑
i,j

(|wj〉〈wj |)A(|vi〉〈vi|) =
∑
i,j

〈wj |A|vi〉|wj〉〈vi|

2 Lecture#2 (Jan 23)

[Exc] Consider the linear operator AZ : C2 → C2 defined by the matrix Z =

[
1 0
0 −1

]
. Let {|0〉 =[

1
0

]
, |1〉 =

[
0
1

]
} be the standard basis. Show that

AZ = |0〉〈0| − |1〉〈1|

[The Cauchy-Schwarz Inequality] For any vectors |v〉 , |w〉 ∈ V ,

|〈v|w〉|2 ≤ 〈v|v〉〈w|w〉

Proof:

[Adjoint] Consider the inner product spaces V and W . For any linear operator A : V →W , the adjoint
of A, denoted by A†, is the unique oeprator A† : W → V such that

(|v〉 , A |w〉) = (A† |v〉 , |w〉), for all |v〉 ∈ V, and |w〉 ∈W

[Exc] Show that A† is unique and also it is linear.

[Exc] (A |v〉 , |w〉) = (|v〉 , A† |w〉), for all |v〉 ∈ V and |w〉 ∈ V

[Exc] (A†)† = A

[Exc] For linear operators A,B, show that (AB)† = B†A†.

[Dual] For any |v〉 ∈ V , consider the linear operator S|v〉 : C → V defined as follows: for any α ∈ C,
S|v〉(α) = α |v〉. Then

(S|v〉)
† = 〈v| ,
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where 〈v| : V → C is the dual linear operator corresponding to |v〉. We drop the notation S|v〉 and using
|v〉 to think of it as the corresponding operator and therefore write

|v〉† = 〈v|

.

Proof: Take any α ∈ C and |u〉 ∈ V .

(S|v〉(α), |u〉) = (α |v〉 , |u〉)
= (α, 〈v|u〉)
= (α, 〈v| (|u〉))

Therefore, (S|v〉)
† = 〈v|, i.e., |v〉† = 〈v|.

[Exc] For any linear operator A and |v〉 ∈ V , we have (A |v〉)† = 〈v|A†

[Fact] For any |v〉 , |w〉 ∈ V , (|w〉〈v|)† = |v〉〈w|

Proof: Take any |v1〉 ∈ V and |w1〉 ∈W . Then

(|w〉〈v|(|v〉1), |w1〉) = (|w〉 〈v|v1〉, |w1〉〉)
= (〈v|v1〉, |w〉† |w1〉)
= (〈v| (|v1〉), |w〉† |w1〉)
= (|v〉† (|v1〉), |w〉† |w1〉)
= (|v1〉 , (|v〉†)† |w〉† |w1〉)
= (|v1〉 , |v〉〈w|(|w1〉))

Therefore, (|w〉〈v|)† = |v〉〈w|.

[Exc] Show that (
∑
i αiAi)

† =
∑
i α
∗A†i .

[Self-adjoint or Hermitian] A linear operator A : V → V is self-adjoint or Hermitian if

A† = A

[Exc] The outer product |v〉〈v| is self-adjoint.

[Projector] Let V be an inner product space of dimension m and W be a subspace of V of dimension n.
Let {|1〉 , |2〉 , . . . , |n〉} be an orthonormal basis ofW and {|1〉 , . . . , |n〉 , |n+ 1〉 , . . . , |m〉} be an orthonormal
basis of V . Let P =

∑n
i=1 |i〉〈i|. Then P is an orthogonal projector on the subspace W .

[Unitary Operator] An operator A is called unitary if A†A = I.

[Exc] If A is an unitary operator, then AA† = I

[Exc] Unitary operators preserve inner products, i.e., if U is an unitary operator, then, for all |v〉 , |w〉,
we have

(|v〉 , |w〉) = (U |v〉 , U |w〉)

Indeed, (U |v〉 , U |w〉) = (U†U |v〉 , |w〉) = (I |v〉 , |w〉) = (|v〉 , |w〉).

[Outer product representation of any unitary U ] Let {|vi〉} be any orthonormal basis set. Define
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|wi〉 = U |vi〉, so {|wi〉} is also an orthonormal basis set. Then

U =
∑
i,j

〈wj |U |vi〉|wj〉〈vi|

=
∑
i,j

(|wj〉 , U |vi〉)|wj〉〈vi|

=
∑
i,j

(U |vj〉 , U |vi〉)|wj〉〈vi|

=
∑
i,j

(U†U |vj〉 , |vi〉)|wj〉〈vi|

=
∑
i,j

(|vj〉 , |vi〉)|wj〉〈vi|

=
∑
i

|wi〉〈vi|

[Orthogonal Decomposition] A orthogonal decomposition for an operator A : V → V is a representa-
tion

A =
∑
i

λi|i〉〈i|,

where {|i〉} form an orthonormal set of eigenvectors for A, with corresponding eigenvalues λi.

3 Lecture#3 (Jan 27)

The Postulates of Quantum Mechanics

Quantum mechanics provides a mathematical and conceptual framework for the development of laws a
physical system must obey. In the following we give a description of the basic postulates of quantum
mechanics.

Postulate 1(State Space)

I Associated to any isolated physical system is an inner product space V over C known as the state
space of the system. The system is completely described by its state vector |ψ〉 ∈ V , which is a unit
vector, i.e., 〈ψ|ψ〉 = 1.

Postulate 2 (Evolution)

I The evolution of a closed quantum system is described by a unitary operator. Specifically, if the
system is in the state |ψ〉 at time t1, then its state |ψ′〉 at time t2 is given by

|ψ′〉 = Ut1,t2 |ψ〉 ,

where Ut1,t2 is a unitary operator that depends only on the times t1 and t2.

Postulate 3 (Quantum Measurement)

I A quantum measurement is described by a collection of measurement operators {Mm}nm=1 acting
on the state space of the system. These operators satisfy the completeness relation

n∑
m=1

M†mMm = I
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If the system is in the state |ψ〉 prior to measurement, then the measurement produces a classical
outcome m with probability

P[m] = 〈ψ|M†mMm|ψ〉.

Conditioned on obtaining classical outcome m, the post-measurement quantum state of the system
is

|ψm〉 =
Mm |ψ〉√
〈ψ|M†mMm|ψ〉

.

Thus, the measurement can be viewed as a random experiment whose outcome is the pair

(m, |ψm〉) ,

wherem represents the classical measurement outcome and |ψm〉 is the corresponding post-measurement
quantum state.

[Exc] Show that
∑n
m=1 P[m] = a

Proof:

1 = (|ψ〉 , |ψ〉)
= (|ψ〉 , I |ψ〉)
= (|ψ〉 , (

∑
m

M†mMm)(|ψ〉))

=
∑
m

(|ψ〉 ,M†mMm(|ψ〉))

=
∑
m

〈ψ|M†mMm|ψ〉

=
∑
m

P[m]

4 Lecture#4 (Jan 30)

[Exc] Consider a quantum mechanical system with state space C2 (with {|0〉 , |1〉} as basis) and the current
state vector |ψ〉 = α |0〉+β |1〉 with 〈ψ|ψ〉 = |α|2+|β|2 = 1. Suppose we attempt to measure the state using
the following collection of measurement operators given by the outer products {M0 = |0〉〈0|,M1 = |1〉〈1|}
satisfying completeness property. As per the Postulate #3, the possible set of post-measurement outputs
are:

(0, |ψ0〉 = M0ψ√
〈ψ|M†

0M0|ψ〉
) with probability 〈ψ|M†0M0|ψ〉, and (1, |ψ1〉 = M1ψ√

〈ψ|M†
1M1|ψ〉

) with probability

〈ψ|M†1M1|ψ〉.

Check that

〈ψ|M†0M0|ψ〉 = (|ψ〉 ,M†0M0 |ψ〉)
= (M0 |ψ〉 ,M0 |ψ〉)
= ((|0〉〈0|)(α |0〉+ β |1〉), (|0〉〈0|)(α |0〉+ β |1〉))
= (α(|0〉〈0|)(|0〉) + β(|0〉〈0|)(|1〉), α(|0〉〈0|)(|0〉) + β(|0〉〈0|)(|1〉))
= (α |0〉 〈0|0〉+ β |0〉 〈0|1〉, α |0〉 〈0|0〉+ β |0〉 〈0|1〉)
= (α |0〉 , α |0〉)
= α∗α (|0〉 , |0〉)
= |α|2

Similarly, 〈ψ|M†1M1|ψ〉 = |β|2. Therefore, |ψ0〉 = M0ψ√
〈ψ|M†

0M0|ψ〉
= α|0〉
|α| and |ψ1〉 = M1ψ√

〈ψ|M†
1M1|ψ〉

= β|0〉
|β|

7



Postulate 4 (Composite Systems)

Suppose a composite quantum system made up of two (or more) distinct physical systems. The state
space of this composite system is the tensor product spaces of the component physical systems. Moreover,
if we have systems numbered 1 through n, and system number i is prepared in the state |ψ〉, then the
joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

Tensor Products

Let V,W be vector spaces over C.

- For every |v〉 ∈ V and |w〉 ∈ W , introduce a formal symbol |v〉 ⊗ |w〉. Let F be the set of all finite
formal linear combinations

F =

{
r∑

k=1

αk |vk〉 ⊗ |wk〉 | r ∈ N, αk ∈ C, |vk〉 ∈ V, |wk〉 ∈W

}

Addition and scalar multiplication are defined term wise, so F is a vector space (the free vector space
generated by the symbols |v〉 ⊗ |w〉). Note that the zero element in F is given by

∑
k 0(|vk〉 ⊗ |wk〉)

• Let R ⊆ F be the subspace generated by the following elements: for every |v〉 , |v1〉 , |v2〉 ∈ V ,
|w〉 , |w1〉 , |w2〉 ∈W , and α ∈ C

α(|v〉 ⊗ |w〉)− (α |v〉)⊗ |w〉,
α(|v〉 ⊗ |w〉)− |v〉 ⊗ (α |w〉),

(|v1〉+ |v2〉)⊗ |w〉 − (|v1〉 ⊗ |w〉) + (|v2〉 ⊗ |w〉),
|v〉 ⊗ (|w1〉+ |w2〉)− (|v〉 ⊗ |w1〉) + (|v〉 ⊗ |w2〉)

Finally, the tensor product is defined as the quotient vector space

V ⊗W = F/R

[Fact] Let {|i〉}mi=1 and {|j〉}nj=1 be the bases of V and W respectively. The basis of V ⊗W is given by
{|i〉 ⊗ |j〉}1≤i≤m,1≤j≤n. Therefore dimension of V ⊗W is mn.

Brief Sketch: Take any |v〉 ⊗ |w〉. Suppose |v〉 =
∑
αi |i〉 and |w〉 =

∑
βj |j〉. Then

|v〉 ⊗ |w〉 =
(∑

αi |i〉)⊗ (
∑

βj |j〉
)

=
∑
i

(αi |i〉)⊗
(∑

βj |j〉
)

=
∑
i,j

(αi |i〉)⊗ (βj |j〉)

=
∑
i,j

αi (|i〉 ⊗ (βj |j〉))

=
∑
i,j

αiβj (|i〉 ⊗ |j〉)

[Exc] If V and W are inner product spaces over C, then V ⊗W is also an inner product space, where the
inner product is given by∑

i

αi |vi〉 ⊗ |wi〉 ,
∑
j

βj |v′i〉 ⊗ |w′j〉

 =
∑
i,j

α∗i βj(|vi〉 , |v′j〉)(|wi〉 , |w′j〉)
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[Exc] Consider the vector space C2 with orthonormal basis {|0〉 , |1〉}. Consider the tensor product space
C2 ⊗ C2. Its basis is given by

{|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉}

We use the following natural labels for the basis elements:

|00〉 = |0〉 ⊗ |0〉
|01〉 = |0〉 ⊗ |1〉
|10〉 = |1〉 ⊗ |0〉
|11〉 = |1〉 ⊗ |1〉

[Exc] Not every element of the tensor product space V ⊗W can be written as a simple tensor of the form
|v〉 ⊗ |w〉, with |v〉 ∈ V and |w〉 ∈W .

Consider the space C2⊗C2 and the vector 1√
2
|00〉+ 1√

2
|11〉. We claim that this vector cannot be expressed

as |v〉⊗|w〉, for any |v〉 , |w〉 ∈ C2. ISuppose, for the sake of contradiction, that 1√
2
|00〉+ 1√

2
|11〉 = |v〉⊗|w〉

where |v〉 = α0 |0〉+ α1 |1〉 and |w〉 = β0 |0〉+ β1 |1〉. Then

1√
2
|00〉+

1√
2
|11〉 = (α0 |0〉+ α1 |1〉)⊗ (β0 |0〉+ β1 |1〉)

= α0β0 |0〉 ⊗ |0〉+ α0β1 |0〉 ⊗ |1〉+ α1β0 |1〉 ⊗ |0〉+ α1β1 |1〉 ⊗ |1〉
= α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉

This implies, α0β0 = 1, α0β1 = 0, α1β0 = 0, and α1β1 = 1. These equations cannot be satisfied
simultaneously. Hence, 1√

2
|00〉+ 1√

2
|11〉 can not be written as a simple tensor |v〉 ⊗ |w〉.

[Tensor of Linear Operators]

Let V and W be two vector space with bases {|i〉} and {|j〉} respectively. Take any linear operators
A : V → V ′ and B : W →W ′. The tensor product of A and B, denoted as A⊗B, is a linear map defined
as follows: for any basis element |i〉⊗ |j〉, define (A⊗B)(|i〉⊗ |j〉) = A |i〉⊗B |j〉, and extend linearly, i.e,
for any

∑
αi,j |i〉 ⊗ |j〉, (A⊗B)(

∑
αi,j |i〉 ⊗ |j〉) =

∑
αi,j(A⊗B)(|i〉 ⊗ |j〉).

[Exc] Show that (A⊗B)† = A† ⊗B†.

Take any |v〉 ∈ V, |w〉 ∈W, |v′〉 ∈ V ′, |w′〉 ∈W ′, we have

((A⊗B)(|v〉 ⊗ |w〉), |v′〉 ⊗ |w′〉) = (A |v〉 ⊗B |w〉 , |v′〉 ⊗ |w′〉)
= (A |v〉 , |v′〉) (B |w〉 , |w′〉)
=

(
|v〉 , A† |v′〉

)
(|w〉 , B† |w′〉)

=
(
|v〉 ⊗ |w〉 , A† |v′〉 ⊗B† |w′〉

)
=

(
|v〉 ⊗ |w〉 , (A† ⊗B†)(|v′〉 ⊗ |w′〉)

)
Therefore, (A⊗B)† = A† ⊗B†.
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